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Problem 1 Suppose that f: [—1,1] — R is continuous and that

(/_11 e” f(z) dx>2 > (/_llf(x) dx) (/_11 e* f(x) dx) .

Prove that there exists a point ¢ € (—1,1) such that f(c) = 0.
[Robert Skiba / Nicolaus Copernicus University in Torun]

Solution Assume on the contrary that f(x) # 0 for all z € (—1,1). Then f(z) must be everywhere positive
or negative. By replacing f(z) with —f(x) if necessary, we can assume that f(x) > 0 on (—1,1). Then we can
write

fa) = (VI@)

([ e (Vi) ) = ([ some) ([ o). "

On the other hand, the Cauchy-Schwarz inequality implies that

(/11 er( f(:z:))Qda,’)Q - (/11 (em) mdx>2 < (/11 eQ“"f(x)dx> (/llf(x)dx) . (©

Taking into account (1) and (2), we get

(/_11 e%\/ﬁ)\/mdx)2 _ (/_11f(x>dm> (/1 e2xf(ac)dx> .

-1

Hence, we get

On the other hand, it is well known that the equality holds in the Cauchy-Schwarz inequality if and only if
e/ f(x) is a constant multiple of 1/ f (x), but this is not possible. Therefore, we can conclude, by a contradiction
argument, that there exists a point ¢ € (—1,1) such that f(c) = 0. O
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Problem 2 A real 2024 x 2024 matrix A is called nice if (Av,v) = 1 for every vector v € R??* with unit norm.
a) Prove that the only nice matrix such that all of its eigenvalues are real is the identity matrix.
b) Find an example of a nice non-identity matrix. [Stoyan Apostolov / Sofia University]

Solution Using the properties of transposed matrices, we obtain:
2(Av,v) = (Av,v) + (v, Av) = (Av,v) + (ATv,v) = (A + AT )v,v) =2 (1)

for every unit vector v. Since A + A7 is symmetric, all eigenvalues of A + AT are real. From (1), it follows
that all eigenvalues of A + AT are equal to 2. But every symmetric matrix is diagonalizable, therefore A + AT
is similar to a scalar matrix with 2 along the diagonal, the matrix 2/ (where I denotes the identity matrix of
order n). It is directly seen that any matrix similar to a scalar matrix is also scalar. Thus, A + AT = 2T .
Consequently A is normal. Since its characteristic roots are real, it is Hermitian and hence symmetric. Thus,
from A+ AT = 2I, we obtain A = I.

b) Let B be a nonzero antisymmetric matrix. It is directly verified that (Bv,v) = 0 for every vector v. Then
A := B + I is non-identity and satisfies the condition of the problem. O
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Problem 3 Let a; > 0 and for n > 1 define

1
al—i—ag—i—...—i—an'

Ap4+1 = Qp +

2

Prove that lim " = 2. [Teodor Chelmus / Alexandru Ioan Cuza University of Iasi]
n—oo Inn

Solution Since a; > 0, it follows that the given sequence is strictly nondecreasing. Let ¢ € (0, 00] the limit of
the sequence (an)nen+. If £ would be finite, then

1 . 1 . n .
~ = lim — = lim = lim n(ant1 — an).
n—00 Uy, n—ooa; +ag + ...+ ay n—00

Using the telescoping technique, and the limit above, one has

o0 o0
. 1
f—a; = lim an—alzg (an+1—an)~2 — = o0.
n—o0 n
n=1 n=1

Contradiction. So a, — co. Further we will prove that that a, goes to infinity in same manner as the sequence
(V2Inn),en- does. The presence of the Inn suggests to us to think at harmonic series and the fact that

It is enough to show that

2 2 2
lim —— " i o ” N g
n—o00 1 1 n—o00 1 1
1+-4+...+— 1+-4+...+—
2 n 2 n

Let S, = a1 +az+ ...+ a,. We will use, again, the telescoping technique to write that

[eS) [eS) a +a
: 2 2 _ } : 2 2\ 2 : n+1 n
nh_I)I;O ap — a1 = (an—i-l - a’n) - S (1)
n=1 n=1 n

Taking into account that a,11 —a, = g e have
n

2 2 an+1 + (079 (079 anJrl
a —Qa = = — — + ]. 2
n+1 n Sn Sn < an ) ( )
Observe now that
&:Snfl"_an :5171714»1 — &7Sn71 :1+Snflisn71 :1+ 1 )
Qnp Gnp Qnp Gnp Gp—1 Qnp Qp—1 ApQp—1

Passing to limit, the sequence (S, /a, — Sp—1/an—1) is convergent to 1, and using, again, that if a sequence
admits a limits (finite or not), then the mean values sequence (Cesaro mean) admits the same limit, we deduce

that )
_ 1 _
1= lim <Sn—Sn 1):limZ(S”_S" 1):limsp.
n—0o0 \ A Ap—1 p—o0 P anp, Ap—1 p—ro0 Pay

an+1

Going back in (2), and using that

— 1, is follows that

n

lim n(a?,, —a2) = lim 2n (an—H + 1) =2.

n— oo n—00 Sn

The proof is complete. O
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n—1
Problem 4 Let (b,),>0 be a sequence of positive integers satistying b, = d( > bk) for allm > 1. (By d(m)
we denote the number of positive divisors of m.) k=0

a) Prove that (by,)n>0 is unbounded.

b) Prove that there are infinitely many n such that b, > by41. [Adrian Beker / University of Zagreb]

Solution Define s,, = ZZ;S ag for n > 0. Thus, (s,)n>0 is a strictly increasing sequence such that so = 0.
Moreover, a,, = d(s,) for all n > 1.

(i) Suppose for contradiction that there exists C' € N such that a,, < C for all n > 0. Enumerate the primes
as a strictly increasing sequence (pi)r>1. By the Chinese Remainder Theorem, there exists a positive integer =
such that x = —j (mod pJC) for all 1 < j < C. In particular, we have d(z + j) > C + 1 forall 1 < j < C. Now
choose the least n > 0 such that s,, > x. Then we must have n > 1, so by minimality of n, we have s, 1 < z.
Thus,

T < Sy =8p-1+an-1 <x+C,

so it follows that a,, = d(s,,) > C, which is a contradiction.

(ii) We begin by establishing the following auxiliary result:

Lemma Given a positive integer a, let f(a) be the length of the longest arithmetic progression of positive
integers with common difference a all of whose terms have exactly a divisors. Then we have f(a) <. a'¢ for
any € > 0.

Proof We may assume that ¢ is small and fixed and a is large. Enumerate the primes and the primes not
dividing a as strictly increasing sequences (px)x>1 and (qx)x>1 respectively. Then we have g < piiq(q) for all

k> 1. Fix k > 1, write { = v}, (a) and consider the number b = Hf: q7*. We claim that f(a) < b. Indeed,
consider any arithmetic progression s,s + a,...,s + (b — 1)a of length b with common difference a. Since a
and b are coprime, it follows that {0,a,...,(b — 1)a} is a complete residue system modulo b, and hence so is
{s,s4+a,...,s+ (b—1)a}. In particular, by the Chinese Remainder Theorem, there exists ¢ € {0,1,...,b—1}
such that s + ia = q;”“_l (mod ¢}*) for all 1 < j < £+ 1. But this means that vy, (s +ia) = py — 1 for all
1 <j <¢+1 and hence that p,™ | d(s +1a). In particular, we cannot have d(s 4 ia) = a, so the claim follows.
It remains to find a good upper bound on b for various values of k.

Suppose that f(a) > a'*®. Since b < qéﬁl)p’“ < pz(eitl():)ip it follows by taking logarithms that (¢ +

1)1og poy(ay+e+1 > %loga. By a weak version of the prime number theorem, we have 7(z) = Q( L

log x

for x > 2, so it follows that p,, = O(mlogm) for m > 2. Thus, logp,, < logm + loglogm + O(1) for
m > 2, so logp, < (1 + %) logm if m is large enough. On the other hand, it is clear that w(a),? < log, a,
so m = w(a) + £+ 1 satisfies m < 2logya + 1 < 6loga if a > 2. Hence, if a is large enough, it follows that

log pm < (14 £) logloga, whence £+ 1 > L5 loga ¢, (0, 3). Therefore, letting z = I+5 loga ¢ e < x,

pr logloga 1+2 logloga’
. 142
it follows that £ > 2 and hence that ¢ > fﬂ > 1fg loga Therefore, we have
€ +5 pr logloga

1 1
loga > vak(a)logpk2(1+f) oga Z 08 Pk

i 9 loglogapkgx Dk

1

But by Mertens’ first theorem, we have 37 __ 105% = logz + O(1), so it follows that z < (loga)'*5 , which is
a contradiction if @ is large. Thus, the lemma is proved. o

It is now not hard to prove the desired statement. Indeed, it is a standard fact that, for any § > 0, we have
1 . . .
d(m) <5 m?. Hence, we have d(m) < m5 for all sufficiently large m. Now consider the function

g:(0,00) = R, t s t5,

Then g is differentiable with ¢'(t) = %t_%, which is a decreasing function. By the Mean Value Theorem, for all
sufficiently large n we have

Sn -

S

(SAR I

9(sn41) — g(sn) < (Snt1 — sn)g (sn) = d(sn)g (5n) < 3,% . g



It follows that g(s,) < n, whence s,, < n1 and hence there is a constant B such that a, < Bni for all n > 1.

Now suppose for contradiction that there exists NV > 0 such that a,, < a,4; for all n > N. By the Lemma for

e =1, it follows that for each a € N there are at most Ca? integers n > N such that a, = a, where C is some
absolute constant. It now follows that C Za<BM1 a> > M — N for all M > N, which is a contradiction for

1
large M since Y . a% = O(z?). O

a<lzx



