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Problem 1 Let f: R — R be a continuously differentiable function. Prove that

oo

[Robert Skiba / Nicolaus Copernicus University in Torun]
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This completes the solution. O
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Problem 2 Let n be a positive integer and let A, B be two complex nonsingular n X n matrices such that
A’B —2ABA+ BA®=0.

Prove that the matrix AB"'A~'B — I,, is nilpotent. (Here I,, denotes the n x n identity matrix. A matrix X
is called nilpotent if there exists a positive integer k such that X* = 0.)

[Pasha Zusmanovich / University of Ostraval
Solution It is enough to prove that 1 is the only eigenvalue of AB~1A!B.
Lemma If \ is an eigenvalue of AB~'A~'B, then 2271 is an eigenvalue of AB~'A'B.

Proof Since AB~'A~!B is nondegenerate, A # 0, and AB~'A~!B — \E is degenerate. Then
BA~! (AB—lA—lB - )\E) =AY BA-AB)A™' + (1 - \)A"'B (1)

is degenerate.
The condition A28 —2ABA+BA? = 0 is equivalent to the condition that A commutes with AB — B A, hence
A~! commutes with AB— BA, and the right-hand side of (1) can be rewritten as A\AA~2(BA—AB)+(1-\)A~1B.
Hence

22 -1
E

%B*A(AA*(BA — AB)+(1— )\)A_lB) — B lAIBA -

is degenerate, i.e., 2)‘)\_1 is an eigenvalue of B~'A"1BA.
The matrices B~'A"'BA and AB~'A~'B are conjugate by A, hence they have the same eigenvalues, so

22=1 s also an eigenvalue of AB"'A~!B. o

Iterating the lemma, we get that for any eigenvalue A of AB™'A~!'B, and any integer k > 1,

kA — (k — 1)
(k— DA — (k—2)

is also an eigenvalue of AB"'A~'B. Since AB~'A~'B has only a finite number of eigenvalues, we have

kXA — (k—1) A= (K —1)

k—Dr—(k-2) (K —1Dr—(k —2)

for some (actually, infinitely many) k& # k’. The last equality is equivalent to (k — k')(A — 1)? = 0, whence
A=1. O
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Problem 3 Let n be a positive integer and let G be a simple undirected graph on n vertices. Let d; be the
degree of its i-th vertex, i = 1,...,n. Denote A = maxd;. Prove that if

Zd? > nA(n—A)

=1

then G contains a triangle. (A graph is called simple if there are no loops and no multiple edges between any
pair of vertices.) [Slobodan Filipovski / University of Primorska, Koper]

Solution We prove the claim by contraposition assuming that the obtained graph G does not contain triangles.
If the i-th and the j-th vertex are connected we denote ¢ ~ j. In this case holds d; 4+ d; < n. Hence

o= Y (di+ dy) < mn, (1)

where m is the number of edges in the graph.

Let v be a vertex of G with maximum degree A. Since G is a triangle-free graph there are no edges in the
neighbourhood of v. Moreover, every vertex which is not in the neighborhood of v has degree at most A.
Therefore, the maximum number of edges of G is

m<A+(n—A-1)A=A(n—A). (2)
From (1) and (2) we get

Zd? <mn <nA(n—A). (3)
i=1
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Problem 4 Let p > 2 be a prime and let
A={neN:2p|nandp®fnandn|3"—1}.

Prove that

. |AN[LE]|  2log3
lim sup < .
k—s00 k plogp
[Slobodan Filipovski / University of Primorska, Koper|
Solution Let n € A,. Then p | (3% — 1)(3% + 1), from where 3% = 1 (mod p) or 3% = —1 (mod p). Since
p | n and n is an even number, n = pr, where r is even. Since (p,3) = 1, Fermat’s little theorem yields
33 =(37)2 =32 (mod p). Hence, 32 =1 (mod p) or 32 = —1 (mod p). Recalling (p,3) = 1 again, let [ denote

1
the smallest positive integer satisfying 3' = 1 (mod p). This yields p < 3!, and therefore [ > log]; As shown
0g

r
above, there are two possible residue classes modulo [ that 3 might belong to. Thus, the asymptotic density of

log 3

ogp’
To determine the asymptotic density of the multiples of p within the set of all positive integers, we can consider

the set My = {p, 2p, 3p, ..., mp} with mp < k, for a positive integer k. Then |M}| = m, and therefore

the multiples rp for which r satisfies the above conditions within the set of all multiples of p is at most 2 -

m 1
d(My) =limsup — < —.
(M) koo K p
By these observations we get
= . [ApN[LE]l 1 2  2log3
d(A,) =limsuyp ———— < — - = < .
(Ap) =i sup =5 p |~ plogp



