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Problem 1 Determine whether there exists a differentiable function f: [0,1] — R such that

/01 f(z)dx

[Robert Skiba / Nicolaus Copernicus University in Torun]

fO)=f1)=1, |f(z)]<2forallze0,1] and <

1
5 -

Solution Let us suppose that there exists the required function f: [0,1] — R. Then the mean value theorem
implies that for any = € (0,1) there exist c¢;,d, € (0,1) such that

and

flz) — f(1) :f(x)fl = f(d,) <2 = f(z) >2x — 1.

z—1 z—1
Hence we infer that
flx) = 22 —1]
for all z € [0,1]. Thus
1 1
1
/ f(x)dx Z/ |22 — 1|dz = =.
0 0 2
On the other hand, one has
1 1
1
/ fz)dz < / fl@)dx| < =.
0 0 2

Thus
! 1
| raae=3.

/ (f(z) - 22 — 1])dz = 0.
0

But f(x) — |22 — 1] is nonnegative and continuous and therefore f(x) — |22 — 1| = 0 for all z € [0,1]. Hence
f(z) = |22 — 1| for all = € [0,1]. This implies that f(z) is not differentiable at the point 2 = %, which implies
the contradiction because we assumed that f(z) is differentiable at any point = € [0, 1]. O

which implies that
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Problem 2 For any given pair of positive integers m > n find all a € R for which the polynomial 2™ — ax™ + 1
can be expressed as a quotient of two nonzero polynomials with real nonnegative coefficients.
[Arturas Dubickas / Vilnius University]
Solution The answer is a < m -n™"/™ . (m —n)"/m~1,
For a < 0 the given polynomial
fl@)y=a™ —az" +1 (1)

has the required form P(z)/Q(z), since one can select P(z) = f(z) and Q(x) = 1. So, from now on, let us
assume that a > 0.

Note that f/(z) = maz™  — anz™' vanishes at zg = (an/m)"/(™=™). Thus, the polynomial f has a real
positive root, say [, if

flxo) =1 —ag(a—ag™") =1~ (m—n)n™ "= (a/m)"™/ "= <0,

ie, a>m-n""/™.(m —n)"""1. For any such a assume that one has f(z) = P(z)/Q(x) with appropriate
polynomials P and @. Then, P(8) = f(8)Q(5) = 0, which is impossible, since 8 > 0 and P € R[z] has real
nonnegative coefficients (and is nonzero).

Finally, we will show that f(z) can be expressed in the required form P(z)/Q(z) if a satisfies the opposite
inequality

0<a<m-n"""™. (m—n)"/m1 (2)

To prove this we will use the formula v — v% = (u —v)(uE "1+ ..  + 57 with u = 2™ + 1, v = az" and K

divisible by mn. Fix any a satisfying (2). Set

mnN—1
Pl) = (@ + 1N — (@)™, Q)= 3 (& 4+ 1)1 aany
7=0
with N € N to be chosen later. Then, f(z) = P(z)/Q(z) by (1). Evidently, the polynomial @ has real

nonnegative coefficients. So does also P if the binomial coefficient (™2:) for 2N (in (2 +1)"") is greater
than or equal to a™™V. Thus, it remains to check that

=(in) " = () ©

for some N € N. By Stirling’s formula, M! ~ V27 M (M/e)™ as M — oco. Hence, as N — oo, the right hand
side of (3) tends to the constant

mn

((m = nyn) "= 2n/m

—n/m n/m—l.

=m-n -(m —mn)

Therefore, by (2), the inequality (3) holds for each sufficiently large N € N. O
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Problem 3 Let z1,...,x, be given real numbers with 0 < m < z; < M for each i € {1,...,n}. Let X be

the discrete random variable uniformly distributed on {z1,...,2,}. The mean u and the variance o* of X are
defined as 2 2
p(x)= T I g g2y = @O A (@ plX))
n n
By X? denote the discrete random variable uniformly distributed on {z%,...,22}. Prove that

o2(X) > (2%)202(}(2).

[Slobodan Filipovski / University of Primorska, Koper]
Solution First we prove the following lemma:

Lemma If z and y are strictly positive real numbers, then

PR )

Proof We prove the following equivalent inequality

\f \f>2+ ! )2(+)1>

Let t2 = %, t > 0. The required inequality is equivalent to the inequalities

1 tt—2t2 +1
t+->24+ ———— =2 55 2t 4263 + 2% — 5t +2>0.
+t_ + 2+ 1) + 267 + 2t° + +22
Now we easily show 2t¢ — 5¢5 + 2¢4 4 23 + 2¢2 — 5t + 2 = (¢ — 1)4(2t> + 3t + 2) > 0. D
Let a; = ﬁ and b; = % fori=1,...,n. Applying the above lemma for x = a; and y = b; we obtain
)

x? (2n — (22 + ... +22))? x;

1
-+ = 2+
24+... 422 n < 2(xt n2+(x1+ 4 x2)? )> V(@2 +. +a22)

Now if we sum up the obtained n inequalities in (1) we get

m 1 o T4+ a2Z,
/—+ Z A A T
2+ + a2 Zn_ x; m-o?(X?) a?(X?)
n > i=1 —
" n Tanr e - MOt ey ©
o%(X?) m-o?(X?)

PO 2 (X0 + gy = A+

In the end we get

2(X) = X2) — (X)) (VX2 + u(X > M) (Y 2 x
02(X) = (Vi) = p(X) (Vi) + n(0) = T2 om = (25 ) -0 (X2).
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Problem 4 A function f: ZT — R is called multiplicative if for every a,b € Z* with gcd(a,b) = 1 we have
f(ab) = f(a)f(b). Let g be the multiplicative function given by

a—1

9(p®) = ap™ ",
where o € Z* and p > 0 is a prime. Prove that there exist infinitely many positive integers n such that
gn)+1=g(n+1).

[Leonhard Summerer / University of Vienna]

Solution First we observe that g(n) = 1 for all squarefree integers n. Then we start by finding integers a
and b for which g(a) + 1 = g(b). For example a = 13? and b = 33 so that g(a) = 26 and g(b) = 27. By
the observation at the beginning combined with the multiplicativity of g we have g(ax) = 26 and g(by) = 27
provided z,y are squarefree positive integers with (z,13) = (y,3) = 1. It thus suffices to show the existence
of at least one (resp. infinitely many) solution(s) of the linear diophantine equation ax — by = —1 with the
mentioned restrictions on x, y.

It is well known that all solutions of the above equation are given by

xr =ux0+ 27t and y = yo + 169¢,

where (g, y0) is a particular solution and ¢t = 0,1,2,.... Using the Euclidean Algorithm, one easily finds that
the least positive solution is given by xg = 23 and yy = 144. Unfortunately 144 is neither squarefree nor coprime
to 3, but for t = 2 we find z = 77 = 7- 11 and y = 482 = 2 - 241 which fulfill all requirements and lead to the
solution

g(13013) = 26 and ¢(13014) = 27.

In order to find infinitely many solutions we consider the sequences
Tg = T7+ 27s and y; = 482 4+ 169s,

where s = 39¢,t =0, 1,2,... which guarantees (x,13) = (y,3) = 1. It suffices to show that there exist infinitely
many s such that x4 and y, are simultaneously squarefree. This follows from a Theorem of Prachar, saying that
the density of squarefree integers in the arithmetic progression nk + [ where (k,l) =1 is

which is always greater than 6/72 and hence greater than 1/2. (I



