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Problem 1 Determine whether there exists a differentiable function f : [0, 1] → R such that

f(0) = f(1) = 1 , |f ′(x)| ≤ 2 for all x ∈ [0, 1] and

∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣ ≤ 1

2
.

[Robert Skiba /Nicolaus Copernicus University in Toruń]

Solution Let us suppose that there exists the required function f : [0, 1] → R. Then the mean value theorem
implies that for any x ∈ (0, 1) there exist cx, dx ∈ (0, 1) such that

f(x)− f(0)

x
=

f(x)− 1

x
= f ′(cx) ≥ −2 =⇒ f(x) ≥ −2x+ 1

and
f(x)− f(1)

x− 1
=

f(x)− 1

x− 1
= f ′(dx) ≤ 2 =⇒ f(x) ≥ 2x− 1.

Hence we infer that
f(x) ≥ |2x− 1|

for all x ∈ [0, 1]. Thus ∫ 1

0

f(x) dx ≥
∫ 1

0

|2x− 1|dx =
1

2
.

On the other hand, one has ∫ 1

0

f(x) dx ≤
∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣ ≤ 1

2
.

Thus ∫ 1

0

f(x) dx =
1

2
,

which implies that ∫ 1

0

(f(x)− |2x− 1|) dx = 0.

But f(x) − |2x − 1| is nonnegative and continuous and therefore f(x) − |2x − 1| = 0 for all x ∈ [0, 1]. Hence
f(x) = |2x− 1| for all x ∈ [0, 1]. This implies that f(x) is not differentiable at the point x = 1

2 , which implies
the contradiction because we assumed that f(x) is differentiable at any point x ∈ [0, 1]. □
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Problem 2 For any given pair of positive integers m > n find all a ∈ R for which the polynomial xm−axn+1
can be expressed as a quotient of two nonzero polynomials with real nonnegative coefficients.

[Artūras Dubickas /Vilnius University]

Solution The answer is a < m · n−n/m · (m− n)n/m−1.
For a ≤ 0 the given polynomial

f(x) = xm − axn + 1 (1)

has the required form P (x)/Q(x), since one can select P (x) = f(x) and Q(x) = 1. So, from now on, let us
assume that a > 0.
Note that f ′(x) = mxm−1 − anxn−1 vanishes at x0 = (an/m)1/(m−n). Thus, the polynomial f has a real

positive root, say β, if

f(x0) = 1− xn
0 (a− xm−n

0 ) = 1− (m− n)nn/(m−n)(a/m)m/(m−n) ≤ 0,

i.e., a ≥ m · n−n/m · (m − n)n/m−1. For any such a assume that one has f(x) = P (x)/Q(x) with appropriate
polynomials P and Q. Then, P (β) = f(β)Q(β) = 0, which is impossible, since β > 0 and P ∈ R[x] has real
nonnegative coefficients (and is nonzero).
Finally, we will show that f(x) can be expressed in the required form P (x)/Q(x) if a satisfies the opposite

inequality
0 < a < m · n−n/m · (m− n)n/m−1. (2)

To prove this we will use the formula uK − vK = (u− v)(uK−1 + · · ·+ vK−1) with u = xm + 1, v = axn and K
divisible by mn. Fix any a satisfying (2). Set

P (x) = (xm + 1)mnN − (axn)mnN , Q(x) =

mnN−1∑
j=0

(xm + 1)mnN−1−j(axn)j

with N ∈ N to be chosen later. Then, f(x) = P (x)/Q(x) by (1). Evidently, the polynomial Q has real
nonnegative coefficients. So does also P if the binomial coefficient

(
mnN
n2N

)
for xmn2N (in (xm+1)mnN ) is greater

than or equal to amnN . Thus, it remains to check that

a ≤
(
mnN

n2N

)1/(mnN)

=

(
(mnN)!

((m− n)nN)!(n2N)!

)1/(mnN)

(3)

for some N ∈ N. By Stirling’s formula, M ! ∼
√
2πM(M/e)M as M → ∞. Hence, as N → ∞, the right hand

side of (3) tends to the constant

mn(
(m− n)n

)(m−n)/m
n2n/m

= m · n−n/m · (m− n)n/m−1.

Therefore, by (2), the inequality (3) holds for each sufficiently large N ∈ N. □
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Problem 3 Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each i ∈ {1, . . . , n}. Let X be
the discrete random variable uniformly distributed on {x1, . . . , xn}. The mean µ and the variance σ2 of X are
defined as

µ(X) =
x1 + · · ·+ xn

n
and σ2(X) =

(x1 − µ(X))2 + · · ·+ (xn − µ(X))2

n
.

By X2 denote the discrete random variable uniformly distributed on {x2
1, . . . , x

2
n}. Prove that

σ2(X) ≥
( m

2M2

)2

σ2(X2) .

[Slobodan Filipovski /University of Primorska, Koper]

Solution First we prove the following lemma:

Lemma If x and y are strictly positive real numbers, then√
x

y
+

√
y

x
≥ 2 +

(x− y)2

2(x2 + y2)
.

Proof We prove the following equivalent inequality√
x

y
+

√
y

x
≥ 2 +

(
x
y

)2 − 2
(
x
y

)
+ 1

2
((

x
y

)2
+ 1

) .

Let t2 = x
y , t > 0. The required inequality is equivalent to the inequalities

t+
1

t
≥ 2 +

t4 − 2t2 + 1

2(t4 + 1)
⇔ 2t6 − 5t5 + 2t4 + 2t3 + 2t2 − 5t+ 2 ≥ 0.

Now we easily show 2t6 − 5t5 + 2t4 + 2t3 + 2t2 − 5t+ 2 = (t− 1)4(2t2 + 3t+ 2) ≥ 0. □

Let ai =
x2
i

x2
1+...+x2

n
and bi =

1
n for i = 1, . . . , n. Applying the above lemma for x = ai and y = bi we obtain

x2
i

x2
1 + . . .+ x2

n

+
1

n
≥

(
2 +

(x2
in− (x2

1 + . . .+ x2
n))

2

2(x4
in

2 + (x2
1 + . . .+ x2

n)
2)

)
xi√

(n(x2
1 + . . .+ x2

n)
. (1)

Now if we sum up the obtained n inequalities in (1) we get

2 ≥ 2√
n(x2

1 + . . .+ x2
n)

n∑
i=1

xi +
m√

n(x2
1 + . . .+ x2

n)
· 1

2(M4 + µ2(X2))
·

n∑
i=1

(x2
i −

x2
1 + . . .+ x2

n

n
)2 ⇔√

x2
1 + . . .+ x2

n

n
≥

∑n
i=1 xi

n
+

m · σ2(X2)

4(M4 + µ2(X2))
= µ(X) +

m · σ2(X2)

4(M4 + µ2(X2))
⇔

√
µ(X2) ≥ µ(X) +

m · σ2(X2)

4(M4 +M4)
= µ(X) +

m · σ2(X2)

8M4
.

In the end we get

σ2(X) =
(√

µ(X2)− µ(X)
)(√

µ(X2) + µ(X)
)
≥ mσ2(X2)

8M4
· 2m =

( m

2M2

)2

· σ2(X2).

□
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Problem 4 A function f : Z+ → R is called multiplicative if for every a, b ∈ Z+ with gcd(a, b) = 1 we have
f(ab) = f(a)f(b). Let g be the multiplicative function given by

g(pα) = αpα−1 ,

where α ∈ Z+ and p > 0 is a prime. Prove that there exist infinitely many positive integers n such that

g(n) + 1 = g(n+ 1) .

[Leonhard Summerer /University of Vienna]

Solution First we observe that g(n) = 1 for all squarefree integers n. Then we start by finding integers a
and b for which g(a) + 1 = g(b). For example a = 132 and b = 33 so that g(a) = 26 and g(b) = 27. By
the observation at the beginning combined with the multiplicativity of g we have g(ax) = 26 and g(by) = 27
provided x, y are squarefree positive integers with (x, 13) = (y, 3) = 1. It thus suffices to show the existence
of at least one (resp. infinitely many) solution(s) of the linear diophantine equation ax − by = −1 with the
mentioned restrictions on x, y.
It is well known that all solutions of the above equation are given by

x = x0 + 27t and y = y0 + 169t,

where (x0, y0) is a particular solution and t = 0, 1, 2, . . .. Using the Euclidean Algorithm, one easily finds that
the least positive solution is given by x0 = 23 and y0 = 144. Unfortunately 144 is neither squarefree nor coprime
to 3, but for t = 2 we find x = 77 = 7 · 11 and y = 482 = 2 · 241 which fulfill all requirements and lead to the
solution

g(13013) = 26 and g(13014) = 27.

In order to find infinitely many solutions we consider the sequences

xs = 77 + 27s and ys = 482 + 169s,

where s = 39t, t = 0, 1, 2, . . . which guarantees (x, 13) = (y, 3) = 1. It suffices to show that there exist infinitely
many s such that xs and ys are simultaneously squarefree. This follows from a Theorem of Prachar, saying that
the density of squarefree integers in the arithmetic progression nk + l where (k, l) = 1 is

6

π2

∏
p|k

(
1− 1

p2

)−1

,

which is always greater than 6/π2 and hence greater than 1/2. □


