The 30th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 2nd April 2022 Category II

Problem 1 Determine whether there exists a differentiable function $f: [0,1] \to \mathbb{R}$ such that

$$f(0) = f(1) = 1$$
, $|f'(x)| \le 2$ for all $x \in [0, 1]$ and $\left| \int_0^1 f(x) \, dx \right| \le \frac{1}{2}$.
[10 points]

Problem 2 For any given pair of positive integers m > n find all $a \in \mathbb{R}$ for which the polynomial $x^m - ax^n + 1$ can be expressed as a quotient of two nonzero polynomials with real nonnegative coefficients. [10 points]

Problem 3 Let x_1, \ldots, x_n be given real numbers with $0 < m \le x_i \le M$ for each $i \in \{1, \ldots, n\}$. Let X be the discrete random variable uniformly distributed on $\{x_1, \ldots, x_n\}$. The mean μ and the variance σ^2 of X are defined as

$$\mu(X) = \frac{x_1 + \dots + x_n}{n}$$
 and $\sigma^2(X) = \frac{(x_1 - \mu(X))^2 + \dots + (x_n - \mu(X))^2}{n}$

By X^2 denote the discrete random variable uniformly distributed on $\{x_1^2, \ldots, x_n^2\}$. Prove that

$$\sigma^2(X) \ge \left(\frac{m}{2M^2}\right)^2 \sigma^2(X^2) \,.$$

[10 points]

Problem 4 A function $f: \mathbb{Z}^+ \to \mathbb{R}$ is called multiplicative if for every $a, b \in \mathbb{Z}^+$ with gcd(a, b) = 1 we have f(ab) = f(a)f(b). Let g be the multiplicative function given by

$$g(p^{\alpha}) = \alpha p^{\alpha - 1},$$

where $\alpha \in \mathbb{Z}^+$ and p > 0 is a prime. Prove that there exist infinitely many positive integers n such that

$$g(n) + 1 = g(n+1)$$
.

[10 points]