The $29^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $29^{\rm th}$ March 2019 Category I

Problem 1 Let $\{a_n\}_{n=0}^{\infty}$ be a sequence given recursively by $a_0 = 1$ and

$$a_{n+1} = \frac{7a_n + \sqrt{45a_n^2 - 36}}{2}, \quad n = 0, 1, \dots$$

Show that the following statements hold for all positive integers n:

- a) a_n is a positive integer.
- b) $a_n a_{n+1} 1$ is the square of an integer.

[Štefan Gyürki / Matej Bel University, Banská Bystrica]

Solution

(a) By simple counting $a_1 = 5$. Since $2a_{n+1} - 7a_n = \sqrt{45a_n^2 - 36} \ge 0$, the sequence $\{a_n\}$ is strictly increasing. From the last equation we have:

$$a_{n+1}^2 - 7a_n a_{n+1} + a_n^2 + 9 = 0$$

$$a_n^2 - 7a_{n-1} a_n + a_{n-1}^2 + 9 = 0.$$
(1)

Thus, by taking the difference of these equations we get

$$a_{n+1} = 7a_n - a_{n-1}$$

proving that a_n is always a positive integer.

(b) From (1) we get $(a_{n+1} + a_n)^2 = 9(a_n a_{n+1} - 1)$, hence

$$a_n a_{n+1} - 1 = \left(\frac{a_n + a_{n+1}}{3}\right)^2.$$

We already know that a_n and a_{n+1} are positive integers, therefore $(a_n + a_{n+1})/3$ is rational and its square is $a_n a_{n+1} - 1$ is a positive integer. Thus, $(a_n + a_{n+1})/3$ is also a positive integer and $a_n a_{n+1} - 1$ is a square.

The $29^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $29^{\rm th}$ March 2019 Category I

Problem 2 A triplet of polynomials $u, v, w \in \mathbb{R}[x, y, z]$ is called smart if there exist polynomials $P, Q, R \in \mathbb{R}[x, y, z]$ such that the following polynomial identity holds:

$$u^{2019}P + v^{2019}Q + w^{2019}R = 2019$$
.

a) Is the triplet of polynomials

$$u = x + 2y + 3$$
, $v = y + z + 2$, $w = x + y + z$

smart?

b) Is the triplet of polynomials

$$u = x + 2y + 3$$
, $v = y + z + 2$, $w = x + y - z$

smart?

[Artūras Dubickas / Vilnius University]

Solution The answer is: a) no; b) yes.

In case a) the polynomials u, v, w are all equal to zero at x = 2, y = -5/2 and z = 1/2. This leads to 0 = 2019, which is absurd.

In case b) we have u-v-w=1. Consider the nth power of this identity with some $n \geq 3 \cdot 2018 + 1$:

$$(u-v-w)^n = \sum_{n_1+n_2+n_3=n} \frac{n!(-1)^{n_2+n_3}}{n_1!n_2!n_3!} u^{n_1} v^{n_2} w^{n_3} = 1.$$

By the choice of n, in each term of the sum at least one power n_i is greater than or equal to 2019. (It can be several n_i with this property.) We can thus rewrite the above identity in the form

$$u^{2019}P + v^{2019}Q + w^{2019}R = 1$$

with some $P, Q, R \in \mathbb{Z}[x, y, z]$. (The choice of P, Q, R is not unique.) Multiplying it by 2019 we conclude that the triplet (u, v, w) is useful.

The $29^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $29^{\rm th}$ March 2019 Category I

Problem 3 For an invertible $n \times n$ matrix M with integer entries we define a sequence $S_M = \{M_i\}_{i=0}^{\infty}$ by the recurrence

$$M_0 = M$$

 $M_{i+1} = (M_i^T)^{-1} M_i$, $i = 0, 1, ...$

Find the smallest integer $n \ge 2$ for which there exists a normal $n \times n$ matrix M with integer entries such that its sequence S_M is non-constant and has period P = 7, i.e., $M_{i+7} = M_i$ for all i = 0, 1, ...

 $(M^T \text{ means the transpose of a matrix } M. \text{ A square matrix } M \text{ is called normal if } M^T M = M M^T \text{ holds.})$ [Martin Niepel / Comenius University, Bratislava]

Solution For a normal square matrix M, we have its Schur decomposition $M = UDU^*$, where U is unitary and D is diagonal with eigenvalues of M on the diagonal. It follows, that if $M_i = UD_iU^*$ then $M_{i+1} = U(D_i^*)^{-1}D_iU^*$. So we can pass to eigenvalues and investigate periodic behavior of complex sequences given by the recurrence $\lambda_{i+1} = \lambda_i/\bar{\lambda}_i$. Consequently,

$$\lambda_n = \frac{\lambda_0^{2^{n-1}}}{\bar{\lambda}_0^{2^{n-1}}}.$$

Clearly, $|\lambda_i| = 1$ for $i \ge 1$, and if we require $\lambda_P = \lambda_0$, we arrive at the equation $\lambda_0 = \lambda_0^{2^P}$, so every eigenvalue λ_0 of M has to be $(2^P - 1)^{\text{st}}$ root of unity.

Since all eigenvalues of M satisfy $|\lambda|=1$ and M is normal, M has to be unitary. The matrix M satisfies $M^{2^P-1}=I$, as well. Matrix M can not have all eigenvalues equal to 1, it would imply M=I, and the period would be 1 in that case. Hence, it has at least one primitive $(2^P-1)^{\rm st}$ root of unity as an eigenvalue and 2^P-1 is its multiplicative order.

The only unitary matrices with integer coeficients are signed permutiation matrices (i.e. matrices with exactly one ± 1 in every row and column, all other entries being zero). The order of a $n \times n$ signed permutatation matrix equals the order of the underlying permutation matrix or its double, and therefore has to be a divisor of 2n! – double of the order of a symmetric group S_n . Since $2^P - 1$ is a prime, it follows that $n \ge 2^P - 1$.

For $n=2^P-1$ such matrices, indeed, do exist, take a matrix of an action of a cyclic permutation on \mathbb{R}^{2^P-1} given by $e_i \mapsto e_{i+1}$ for $i=1,2,\ldots,2^P-2$ and $e_{2^P-1}\mapsto e_1$.

The 29th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 29th March 2019 Category I

Problem 4 Determine the largest constant $K \geq 0$ such that

$$\frac{a^a(b^2+c^2)}{(a^a-1)^2} + \frac{b^b(c^2+a^2)}{(b^b-1)^2} + \frac{c^c(a^2+b^2)}{(c^c-1)^2} \ge K\left(\frac{a+b+c}{abc-1}\right)^2$$

holds for all positive real numbers a, b, c such that ab + bc + ca = abc.

[Orif Ibrogimov / Czech Technical University of Prague]

Solution We show that the answer is K = 18 and that the equality holds if and only if a = b = c = 3. In view of the hypothesis of the problem, we deduce from

$$\left(\frac{1}{a} - \frac{1}{b}\right)^2 + \left(\frac{1}{b} - \frac{1}{c}\right)^2 + \left(\frac{1}{c} - \frac{1}{a}\right)^2 \ge 0,$$

that $abc \ge 3(a+b+c)$. This and the elementary inequalities $a^2+b^2 \ge 2ab$, $b^2+c^2 \ge 2bc$, $c^2+a^2 \ge 2ca$ complete the proof if we show that

$$\frac{a^{a-1}}{(a^a-1)^2} + \frac{b^{b-1}}{(b^b-1)^2} + \frac{c^{c-1}}{(c^c-1)^2} \ge \frac{abc}{(abc-1)^2}.$$

For $x \in (0,1)$, by differentiating both sides of the identity $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$, we get the well-known identity

$$\frac{x}{(1-x)^2} = \sum_{k=1}^{\infty} kx^k.$$

We use this identity for $x \in \{a^{-a}, b^{-b}, c^{-c}\}$. Since $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$ by the hypothesis, using Young's inequality, we thus obtain

$$\sum \frac{a^{a-1}}{(a^a-1)^2} = \sum \frac{1}{a} \frac{a^{-a}}{(1-a^{-a})^2} = \sum_{k=1}^{\infty} k \left(\frac{a^{-ak}}{a} + \frac{b^{-bk}}{b} + \frac{c^{-ck}}{c} \right) \geq \sum_{k=1}^{\infty} k a^{-k} b^{-k} c^{-k} = \frac{abc}{(abc-1)^2}.$$

It is easy to see that the equality holds if and only if a = b = c = 3.