The 29th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 29th March 2019 Category II

Problem 1

a) Is it true that for every non-empty set A and every associative operation $*: A \times A \to A$ the conditions

$$x * x * y = y$$
 and $y * x * x = y$ for every $x, y \in A$

imply commutativity of *?

b) Is it true that for every non-empty set A and every associative operation $*: A \times A \to A$ the condition

$$x * x * y = y$$
 for every $x, y \in A$

implies commutativity of *?

[10 points]

Problem 2 Find all twice differentiable functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f''(x)\cos(f(x)) \ge (f'(x))^2\sin(f(x))$$
 for every $x \in \mathbb{R}$. (1)

[10 points]

Problem 3 Let p be an even non-negative continuous function with $\int_{\mathbb{R}} p(x) dx = 1$ and let n be a positive integer. Let $\xi_1, \xi_2, \ldots, \xi_n$ be independent identically distributed random variables with density function p. Define

$$\begin{split} X_0 &= 0 \,, \\ X_1 &= X_0 + \xi_1 \,, \\ X_2 &= X_1 + \xi_2 \,, \\ & \vdots \\ X_n &= X_{n-1} + \xi_n \,. \end{split}$$

Prove that the probability that all the random variables $X_1, X_2, \ldots, X_{n-1}$ lie between X_0 and X_n equals $\frac{1}{n}$. [10 points

Problem 4 Let $D = \{z \in \mathbb{C} : \operatorname{Im} z > 0, \operatorname{Re} z > 0\}$. Let $n \geq 1$ and let $a_1, \ldots, a_n \in D$ be distinct complex numbers. Define

$$f(z) = z \cdot \prod_{j=1}^{n} \frac{z - a_j}{z - \overline{a_j}}.$$

Prove that f' has at least one root in D.

[10 points]