The $29^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $29^{\rm th}$ March 2019 Category I

Problem 1 Let $\{a_n\}_{n=0}^{\infty}$ be a sequence given recursively by $a_0 = 1$ and

$$a_{n+1} = \frac{7a_n + \sqrt{45a_n^2 - 36}}{2}, \quad n = 0, 1, \dots$$

Show that the following statements hold for all positive integers n:

- a) a_n is a positive integer.
- b) $a_n a_{n+1} 1$ is the square of an integer.

[10 points]

Problem 2 A triplet of polynomials $u, v, w \in \mathbb{R}[x, y, z]$ is called smart if there exist polynomials $P, Q, R \in \mathbb{R}[x, y, z]$ such that the following polynomial identity holds:

$$u^{2019}P + v^{2019}Q + w^{2019}R = 2019$$
.

a) Is the triplet of polynomials

$$u = x + 2y + 3$$
, $v = y + z + 2$, $w = x + y + z$

smart?

b) Is the triplet of polynomials

$$u = x + 2y + 3$$
, $v = y + z + 2$, $w = x + y - z$

smart?

[10 points]

Problem 3 For an invertible $n \times n$ matrix M with integer entries we define a sequence $S_M = \{M_i\}_{i=0}^{\infty}$ by the recurrence

$$M_0 = M$$

 $M_{i+1} = (M_i^T)^{-1} M_i$, $i = 0, 1, ...$

Find the smallest integer $n \ge 2$ for which there exists a normal $n \times n$ matrix M with integer entries such that its sequence S_M is non-constant and has period P = 7, i.e., $M_{i+7} = M_i$ for all i = 0, 1, ...

(M^T means the transpose of a matrix M. A square matrix M is called normal if $M^TM = MM^T$ holds.)

[10 points]

Problem 4 Determine the largest constant K > 0 such that

$$\frac{a^a(b^2+c^2)}{(a^a-1)^2} + \frac{b^b(c^2+a^2)}{(b^b-1)^2} + \frac{c^c(a^2+b^2)}{(c^c-1)^2} \ge K\left(\frac{a+b+c}{abc-1}\right)^2$$

holds for all positive real numbers a, b, c such that ab + bc + ca = abc.

[10 points]