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Problem 1 Find all real solutions of the equation

17x + 2x = 11x + 23x .

[10 points]

Solution Let us rewrite the equation as

17x − 11x = 8x − 2x.

It’s easy to see that x = 0 is a solution. Fix x ∈ R \ {0} and suppose that it is a solution to our problem.
Consider the function f(t) = tx. By the mean value theorem applied on the interval [2, 8] there is t1 ∈ (2, 8)
such that

6f ′(t1) = f(8)− f(2) = 8x − 2x.

Again – by the mean value theorem on [11, 17] we get

6f ′(t2) = f(17)− f(11) = 17x − 11x.

Since x is a solution, we have
6f ′(t1) = 6f ′(t2).

Since x 6= 0 we have
6xtx−11 = 6xtx−12 ⇒ tx−11 = tx−12

and (t1/t2)
x−1 = 1. Therefore x = 1, since t1 < t2, and it’s easy to check that it is also a solution. �
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Problem 2 Let n be a positive integer and let a1 ≤ a2 ≤ · · · ≤ an be real numbers such that

a1 + 2a2 + · · ·+ nan = 0 .

Prove that
a1[x] + a2[2x] + · · ·+ an[nx] ≥ 0

for every real number x. (Here [t] denotes the integer satisfying [t] ≤ t < [t] + 1.) [10 points]

Solution We proceed by induction on n. For n = 1 the condition forces a1 = 0 and the statement becomes
trivial.

Suppose that the statement is true for some n and take n + 1 numbers a1 ≤ . . . ≤ an+1 statisfying the
constraints. Notice that an+1 ≥ 0 due to the ordering.

For i = 1, . . . , n, let bi = ai +
2an+1

n
. These numbers are ordered in increasing order, and

n∑
i=1

ibi =

n∑
i=1

(
ai +

2an+1

n

)
=

n∑
i=1

iai +
2

n
(1 + 2 + . . .+ n)an+1 =

n+1∑
i=1

iai = 0.

By the induction hypothesis,

0 ≤
n∑

i=1

bi[ix] =

n∑
i=1

ai[ix] + an+1 ·
2

n

n∑
i=1

[ix].

Applying
[
ix
]
+
[
(n+ 1− i)x

]
≤
[
(n+ 1)x

]
in the last sum, we conclude that

2

n

n∑
i=1

[ix] ≤
[
(n+ 1)x

]
.

Due to an+1 ≥ 0, we get

0 ≤
n∑

i=1

ai[ix] + an+1 ·
2

n

n∑
i=1

[ix] ≤
n+1∑
i=1

ai[ix].

�
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Problem 3 In R3 some n points are coloured. In every step, if four coloured points lie on the same line, Vojtěch
can colour any other point on this line. He observes that he can colour any point P ∈ R3 in a finite number
of steps (possibly depending on P ). Find the minimal value of n for which this could happen. [10 points]

Solution Answer: for n =
(
6
3

)
= 20.

Example for 20 points: take any 6 planes αi, 1 6 i 6 6, in general position and mark their triple intersections.
Then all points on the lines αi ∩ αj may be marked. Any point P in the plane αi may be marked too: draw
a line through P in general position, it meets five lines αi ∩ αj , j 6= i, in five points which may be marked.
It remains do the same with arbitrary point P in the space: draw a line through P , which meets αi’s in six
markable points.

Assume that n 6 19. Then there exists a non-zero polynomial p(x, y, z) of degree at most 3 such that
p(A) = 0 for all marked points. Indeed, the space of such polynomials has dimension 20 > 19. Note that
this property hold true for all points which we may mark: if p(Ai) = 0 for different points A1, A2, A3, A4 on
a line, then p(x) = 0 on the whole line cause of deg p 6 3. Therefore we can not mark a point B for which
p(B) 6= 0. �
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Problem 4 Compute the integral ∫∫
R2

(
1− e−xy

xy

)2

e−x
2−y2

dxdy .

[10 points]

Solution Define the parametric integral

F (%) =

∫∫
R2

(
1− e−%xy

xy

)2

e−x
2−y2

dx dy =

∫∫
R2

1− 2e−%xy + e−2%xy

(xy)2
e−x

2−y2

dxdy;

we have to compute F (1).
In order to get rid of (xy)2 in the denominator, it is natural do differentate F twice. We will compute F ′′(%),

F ′(%) and F (%) for % ∈ [0, 1) and then take the limit of F at 1.
For xy 6= 0 and 0 ≤ % < 1 let

f(%, x, y) =
1− 2e−%xy + e−2%xy

(xy)2
e−x

2−y2

, so F (%) =

∫∫
R2

f(%, x, y) dxdy,

f1(%, x, y) =
∂

∂%
f(%, x, y) =

2e−%xy − 2e−2%xy

xy
e−x

2−y2

and F1(%) =

∫∫
R2

f1(%, x, y) dxdy

and

f2(%, x, y) =
∂2

∂%2
f(%, x, y) = (−2e−%xy + 4e−2%xy)e−x

2−y2

and F2(%) =

∫∫
R2

f2(%, x, y) dxdy.

Notice that for 0 ≤ % ≤ 1− ε, f2 can be dominated as∣∣f2(%, x, y)∣∣ < 6e2%|xy|−x
2−y2

= 6e−%(x−y)
2−(1−%)(x2+y2) ≤ 6e−ε(x

2+y2)

where the dominant function 6e−ε(x
2+y2) has a finite integral; due to f(0, x, y) = f1(0, x, y), we can obtain

the same dominating function for f1 and f . This shows that F2 is continuous, F1(%) =
∫ %

0
f2(t, x, y)dt and

F (%) =
∫ %

0
f1(t, x, y)dt for % < 1, so indeed F1 = F ′ and F2 = F ′1.

Now we compute

F2(%) =

∫∫
R2

∂2

∂%2

(
1− 2e−%xy + e−2%xy

(xy)2
e−x

2−y2

)
dxdy =

∫∫
R2

(
− 2e−%xy + 4e−2%xy

)
e−x

2−y2)
dxdy :

∫∫
R2

e−x
2−2txy−y2

dxdy =

∫∫
R2

e−(x+ty)2−(1−t2)y2

dxdy =

∫ ∞
−∞

e−u
2

du

∫ ∞
−∞

e−(1−t
2)y2

dy =
√
π·
√
π√

1− t2
=

π√
1− t2

,

and similarly ∫∫
R2

e−x
2−txy−y2

dxdy =
π√

1− t2

4

,

so
F2(%) = 4

π√
1− t2

− 2
π√

1− t2

4

.

From F1(0) = 0, we get

F1(%) =

∫ %

0

F2(t) dt = 4π arcsin %− 4π arcsin
%

2
.



Then by F (0) = 0 and integrating by parts,

F (%) =

∫ %

0

F1(t) dt = 4π

∫ %

0

(
arcsin(t)− arcsin(t/2)

)
dt =

= 4π

[t arcsin(t)]
%
0 −

∫ %

0

t√
1− t2

dt− [t arcsin(t/2)]
%
0 +

∫ %

0

t

2
√

1− 1
4 t

2
dt

 =

= 4π
(
% arcsin(%) +

√
1− %2 − % arcsin(%/2)−

√
4− %2 + 1

)
.

Now we show that F is continuous at 1− 0.
The function 1−e−u

u is bounded for |u| ≤ 1, so in the domain |xy| ≤ 1 we have f(%, x, y) < C1e
−x2−y2

;
In the domain |x| ≥ 1, |y| ≥ 1 we have

f(%, x, y) <

(
1 + e%|xy|

|xy|

)2

e−x
2−y2

<

(
2e|xy|

|xy|

)2

e−2|xy| =
C2

|xy|2
.

In the domain |xy| ≥ 1, |x| ≤ 1 we have

f(%, x, y) <
(
1 + e%|y|

)2
e−y

2

< C3e
−(|y|−2)2

and similary, for |xy| ≥ 1, |y| ≤ 1 we have

f(%, x, y) < C3e
−(|x|−2)2

These bounds together provide an integrable dominant function for f , so F (%) is continuous in [0, 1].

Finally,

F (1) = lim
%→1−0

F (%) = 4π

(
arcsin 1− arcsin

1

2
−
√
3 + 1

)
=

4π2

3
− 4(
√
3− 1)π.

�


