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Problem 1 Every point of the rectangle R = [0, 4] × [0, 40] is coloured using one of four colours. Show that
there exist four points in R with the same colour that form a rectangle having integer side lengths. [10 points]

Solution Assume, that the rectangle is [0, 4]× [0, 40]. For any j there are at least two points of the same colour
in Aj = {(j, k) : k = 0, 1, 2, 3, 4}. There are 4 colours and 10 two-element subsets of the set {0, 1, 2, 3, 4}, so
there are j1, j2 ∈ {0, 1, . . . 40} such that the two corresponding points in Aj1 and Aj2 have the same colour. �
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Problem 2 Find all prime numbers p such that p3 divides the determinant∣∣∣∣∣∣∣∣∣∣∣

22 1 1 · · · 1
1 32 1 · · · 1
1 1 42 1
...

...
. . .

1 1 1 (p+ 7)2

∣∣∣∣∣∣∣∣∣∣∣
.

[10 points]

Solution The answer is p ∈ {2, 3, 5, 181}.
Let n = p + 6. Denote by D the determinant in the statement of the problem. Subtracting the first row

from all the remaining rows, we get∣∣∣∣∣∣∣∣∣∣∣

22 1 1 1
−3 32 − 1 0 · · · 0
−3 0 42 − 1 0

...
. . .

...
−3 0 0 · · · (p+ 7)2 − 1

∣∣∣∣∣∣∣∣∣∣∣
.

Hence

D = 3 · (32 − 1) · · · ((n+ 1)2 − 1) ·

∣∣∣∣∣∣∣∣∣∣∣

22

3
1

32−1
1

42−1
1

(n+1)2−1
−1 1 0 · · · 0
−1 0 1 0

...
. . .

...
−1 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
.

Adding all the columns, except for the first one, of the last determinant to the first column, we obtain

D = 3 ·
n+1∏
k=3

(k2 − 1) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

22

3 +
∑n+1

k=3
1

k2−1
1

32−1
1

42−1
1

(n+1)2−1

0 1 0 · · · 0
0 0 1 0

...
. . .

...
0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 3 ·

n+1∏
k=3

(k2 − 1) ·

(
22

3
+

n+1∑
k=3

1

k2 − 1

)
=

7n2 + 17n+ 8

8
(n!)

2
.

One can easily see that the prime numbers p = 2, 3, 5 satisfy the condition of the problem.
Assume that p > 6. Then p < n = p + 6 < 2p, so that (n!)

2 is divisible by p2, but not by p3. Therefore p
divides 7n2+17n+8. Then 7n2+17n+8 ≡ 7 · 62+17 · 6+8 = 2 · 181 (mod p). (Recall that n = p+6.) Hence
p divides 181. Since 181 is a prime number, we obtain that p = 181. �
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Problem 3 Let n be a positive integer and let x1, . . . , xn be positive real numbers satisfying |xi − xj | ≤ 1 for
all pairs (i, j) with 1 ≤ i < j ≤ n. Prove that

x1
x2

+
x2
x3

+ · · ·+ xn−1
xn

+
xn
x1
≥ x2 + 1

x1 + 1
+
x3 + 1

x2 + 1
+ · · ·+ xn + 1

xn−1 + 1
+
x1 + 1

xn + 1
.

[10 points]

Solution Denote h(t) = t− log t. The idea is to prove

h

(
x

y

)
≥ h

(
y + 1

x+ 1

)
whenever x, y > 0 and |x−y| ≤ 1. Then summing up these inequalities for (x, y) = (xi, xi+1) we get the desired
inequality, since the logarithms cancel out. Note that h′(t) = 1− 1/t, so h decreases on (0, 1] and increases on
[1,+∞). We use two simple inequalities:

1. h(t) ≥ h(1/t) for t ≥ 1. Indeed, denoting 1/t = 1−s, s ∈ [0, 1), it rewrites as 1/(1−s)−1+s ≥ −2 log(1−s),
that follows from expanding both parts as series in s.

2. h(1 − s) ≥ h(1 + s) for s ∈ [0, 1). This rewrites as − log(1 − s) + log(1 + s) ≥ 2s, that follows from
expanding as series in s.

Now if x ≥ y, we have h(xy ) ≥ h(
y
x ) ≥ h(

y+1
x+1 ), the second inequality follows from monotonicity of h on (0, 1]

and obvious inequality y
x ≤

y+1
x+1 . Note that here we did not use that |x− y| ≤ 1.

If x < y ≤ x+ 1, we get

h
(x
y

)
= h

(
1− y − x

y

)
≥ h

(
1 +

y − x
y

)
≥ h

(
1 +

y − x
x+ 1

)
= h

(y + 1

x+ 1

)
as desired. �
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Problem 4 Determine all possible (finite or infinite) values of

lim
x→−∞

f(x)− lim
x→+∞

f(x) ,

if f : R→ R is a strictly decreasing continuous function satisfying

f(f(x))4 − f(f(x)) + f(x) = 1

for all x ∈ R. [10 points]

Solution Obviously, the difference of the limits must be positive. We first show that it must be smaller than

(1 + z)4 − 1 where z =
3

4 3
√
4

. Then we show that all values in (0, (1 + z)4 − 1) can be attained.

Assume that f satisfies all the desired properties. Let us denote b = lim
x→−∞

f(x) and a = lim
x→+∞

f(x). Then

b − a > 0 and Hf = (a, b) is the range of f . For all y ∈ Hf we have g(f(y)) = 1 − y, where g(x) = x4 − x.

Function g attains its minimal value −z at x =
1
3
√
4

. So, g(R) = [−z,+∞). It follows that for every y ∈ Hf ,

1− y ∈ [−z,+∞), i.e. Hf ⊂ (−∞, 1 + z]. So, we have a < b ≤ 1 + z.

Function g is decreasing on I1 =
(
−∞, 1

3
√
4

]
and increasing on I2 =

[ 1
3
√
4
,+∞

)
. Let us denote g−11 = (g|I1)−1

and g−12 = (g|I2)−1. Since f is continuous, we have either f(y) = g−11 (1 − y) on Hf or f(y) = g−12 (1 − y) on
Hf . However, since f is decreasing, we have f(y) = g−12 (1 − y) on Hf . Let us denote h(x) = g−12 (1 − x),
x ∈ (−∞, 1 + z]. Note that h is decreasing, h(1) = 1, and h−1(x) = 1 + x − x4. Since f(y) = h(y) on (a, b)
and f(y) < b ≤ 1 + z on R, we have for all ε > 0 small enough h(a + ε) = f(a + ε) < 1 + z, i.e. h(a) ≤ 1 + z.
Obviously, by continuity we have h(a) = f(a), so h(a) = b leads to contradiction with b 6∈ Hf , e.g. we obtain
h(a) < 1 + z. Applying g to both sides of this inequality we get

1− a < g (1 + z) = (1 + z)
4 − (1 + z) , i.e. a > 2 + z − (1 + z)

4
.

Since b ≤ 1 + z, it follows that 0 < b− a < (1 + z)
4 − 1.

We show that for any number c ∈ (0, (1 + z)4 − 1) there exists a suitable function f . In fact, it is sufficient
to find a and b with b− a = c such that h(a) < b, h(b) > a; then we define f(x) = h(x) on [a, b] and on (−∞, a)
and (b,+∞) we take any decreasing continuous function with lim

x→−∞
f(x) = b and lim

x→+∞
f(x) = a and with

appropriate limits at a and b (to be continuous on R).
We show in the Lemma below that h−1(b) < h(b) for every b ∈ J = (1, 1 + z). Let us define for each b ∈ J

a(b) = λ(b)h−1(b) + (1− λ(b))h(b) , where λ(b) =
b− 1

z
.

Then a(b) is a convex combination of h−1(b) and h(b), hence a(b) < h(b) and a(b) > h−1(b), i.e. h(a(b)) < b.
Moreover, function b 7→ b− a(b) is continuous on J with

lim
b→1+

b−a(b) = 1−h(1) = 0 and lim
b→1+z−

b−a(b) = 1+z−h−1(1+z) = 1+z−(1+(1+z)−(1+z)4) = (1+z)4−1,

so b − a(b) attains all values from
(
0, (1 + z)4 − 1

)
. To complete the solution it only remains to prove the

following lemma.

Lemma h−1(b) < h(b) holds for all b ∈ (1, 1 + z) = J .

Proof First, h(b) > h(1 + z) =
1
3
√
4

on J . So, it is sufficient to prove the inequality for all b satisfying

h−1(b) >
1
3
√
4

, i.e.

1 + b− b4 > 1
3
√
4
. (1)

For such b we can apply h−1 to both sides of the inequality h−1(b) < h(b), i.e. we only need to prove
h−1(h−1(b)) > b. Since

h−1(h−1(b)) = h−1(1 + b− b4) = 1 + (1 + b− b4)− (1 + b− b4)4,



we need to show that φ(b) = 1+ (1+ b− b4)− (1+ b− b4)4− b > 0 on J . Obviously, φ(1) = 0, so it is sufficient
to show φ′ > 0 on the subinterval of J where (1) holds. We have (by (1) and b > 1)

φ′(b) = 1− 4b3 − 4(1 + b− b4)3(1− 4b3)− 1 = 4
(
(1 + b− b4)(4b3 − 1)− b3

)
> 4

(
1
3
√
4
(4b3 − 1)− b3

)
= 4

(
b3(42/3 − 1)− 4−1/3

)
> 4

(
42/3 − 1− 4−1/3

)
= 42/3

(
4− 41/3 − 1

)
> 0.
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�


