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Problem 1 Every point of the rectangle R = [0,4] x [0,40] is coloured using one of four colours. Show that
there exist four points in R with the same colour that form a rectangle having integer side lengths. [10 points]
Solution Assume, that the rectangle is [0, 4] x [0,40]. For any j there are at least two points of the same colour
in A; = {(j,k) : K =0,1,2,3,4}. There are 4 colours and 10 two-element subsets of the set {0,1,2,3,4}, so
there are j1,j2 € {0,1,...40} such that the two corresponding points in A;, and A;, have the same colour. O
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Problem 2 Find all prime numbers p such that p3 divides the determinant

22 1 1 1
1 32 1 1
1 1 42 1
1 1 1 (p+17)2

[10 points]

Solution The answer is p € {2,3,5,181}.
Let n = p 4+ 6. Denote by D the determinant in the statement of the problem. Subtracting the first row

from all the remaining rows, we get

22 1 1 1
-3 32-1 0 0
-3 0 42 — 1 0
-3 0 0 - (p+ 7)2 -1
Hence
22 1 1 1
3 3221 42-1 (n+1)2—1
-1 1 0 0
1 0

-1 0 0 - 1

Adding all the columns, except for the first one, of the last determinant to the first column, we obtain

2 +1
2? + 22:3 k21—1 321—1 421—1 (n+11)2—1
ntl 0 1 0 0
D=3-[[(*-1)- 0 0 1 0
k=3 . ) .
0 0 0 1
n+1 2 n+1 2
2 1 ™m*+17Tn + 8 9
=3. E—-1)- | = = N2,
L e R

One can easily see that the prime numbers p = 2, 3, 5 satisfy the condition of the problem.
Assume that p > 6. Then p <n =p+ 6 < 2p, so that (n!)2 is divisible by p?, but not by p3. Therefore p

divides 7Tn? +17n+8. Then T2 +1Tn+8 =7-62+17-6+8 = 2-181 (mod p). (Recall that n = p+6.) Hence
p divides 181. Since 181 is a prime number, we obtain that p = 181. d
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Problem 3 Let n be a positive integer and let x1, ..., x, be positive real numbers satisfying |x; — x;| <1 for
all pairs (i,7) with 1 < i < j < n. Prove that
2 I S TN Bk S T P (sl S e s
To T3 Ty T rz1+1 xo0+4+1 Tp_1+1 =z, +1

[10 points]
Solution Denote h(t) =t — logt. The idea is to prove

1(5)=0(55)

whenever z,y > 0 and |z —y| < 1. Then summing up these inequalities for (z,y) = (x;, z;41) we get the desired
inequality, since the logarithms cancel out. Note that h'(t) = 1 — 1/t, so h decreases on (0, 1] and increases on
[1,4+00). We use two simple inequalities:

1. h(t) > h(1/t) for t > 1. Indeed, denoting 1/t = 1—s, s € [0, 1), it rewrites as 1/(1—s)—1+s > —2log(1—s),
that follows from expanding both parts as series in s.

2. h(l1 —s) > h(1 + s) for s € [0,1). This rewrites as —log(1 — s) + log(1 + s) > 2s, that follows from
expanding as series in s.

Now if z > y, we have h(Z) > h(¥%) > h(X2), the second inequality follows from monotonicity of h on (0, 1]
Y x x+1
and obvious inequality £ < % Note that here we did not use that |z — y| < 1.

frx<y<z+1, weget

h(5) =n(1-155) 2 (1 ) 2+ 25 = h(H)

as desired. 0
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Problem 4 Determine all possible (finite or infinite) values of

im_f(a) ~ limf(z),

Tr—+o0

if f: R — R is a strictly decreasing continuous function satisfying

F(F@)* = f(f(2) + flz) =1
for all x € R. [10 points]

Solution Obviously, the difference of the limits must be positive. We first show that it must be smaller than

(14 2)* — 1 where z = & Then we show that all values in (0, (1 + 2z)* — 1) can be attained.

Assume that f satisfies all the desired properties. Let us denote b = lim f(z) and a = lir}rl f(z). Then
r—— 00 T—r+00

b—a > 0and Hf = (a,b) is the range of f. For all y € H; we have g(f(y)) = 1 —y, where g(z) = z* — .

1
Function ¢ attains its minimal value —z at = = T So, g(R) = [—z,+00). It follows that for every y € Hy,

?

1—y¢€[—2z+00), le. Hf C (—00,1+ z]. So, we have a < b <1+ z.
1
| and increasing on I = [—=,400). Let us denote gt =(gln,)"

V4 V4

and g;* = (g|7,)"". Since f is continuous, we have either f(y) = g;*(1 —y) on Hy or f(y) = g5 (1 —y) on
H;. However, since f is decreasing, we have f(y) = g5 (1 —y) on H;. Let us denote h(z) = g, (1 — z),
x € (—00,1+ z]. Note that h is decreasing, h(1) = 1, and h=!(z) = 1 + = — 2. Since f(y) = h(y) on (a,b)
and f(y) < b <1+ z on R, we have for all € > 0 small enough h(a+¢) = fla+¢) <14z ie. h(a) <1+ 2.
Obviously, by continuity we have h(a) = f(a), so h(a) = b leads to contradiction with b ¢ Hy, e.g. we obtain
h(a) < 1+ z. Applying g to both sides of this inequality we get

Function g is decreasing on I; = (foo,

l—a<g(l4+2)=0+2)"—1+2), ie a>2+z—(1+2)".

Since b < 1+ z, it follows that 0 <b—a < (1 + z)4 —1.

We show that for any number ¢ € (0, (1 + 2)* — 1) there exists a suitable function f. In fact, it is sufficient
to find @ and b with b — a = ¢ such that h(a) < b, h(b) > a; then we define f(x) = h(z) on [a,b] and on (—o0, a)
and (b,4+00) we take any decreasing continuous function with xErPoo f(x) = b and wErJPoo f(x) = a and with

appropriate limits at a and b (to be continuous on R).
We show in the Lemma below that h=1(b) < h(b) for every b € J = (1,1 + z). Let us define for each b € J

a(b) = A(b)h™H(D) + (1 — A(b))h(b), where A(b) = b-1
z
Then a(b) is a convex combination of h=1(b) and h(b), hence a(b) < h(b) and a(b) > h=1(b), i.e. h(a(b)) < b.
Moreover, function b — b — a(b) is continuous on J with

lim b—a(b) =1-h(1)=0 and  lim b—a(b) = 1+2z—h" (1+2) = 14+z—(1+(14+2)—(142)*) = (14+2)*—1,
b—1+ b—1+2z—

so b — a(b) attains all values from (0, (1+2)* - 1). To complete the solution it only remains to prove the
following lemma.

Lemma h~!(b) < h(b) holds for allb € (1,1+ 2) = J.

1
Proof First, h(b) > h(l + 2) = % on J. So, it is sufficient to prove the inequality for all b satisfying
1

h71 b > =1 i.e.
(b) 7 o
1+0-0"> —. 1
7 )
For such b we can apply h~! to both sides of the inequality h=1(b) < h(b), i.e. we only need to prove

h=t(h=1(b)) > b. Since

AU RTYB)) =h M A +b =) =1+ (1 +b—b) — (1+b—0bh?,



we need to show that ¢(b) = 1+ (1+b—b*) — (1 +b—b*)* —b > 0 on J. Obviously, ¢(1) = 0, so it is sufficient
to show ¢’ > 0 on the subinterval of J where (1) holds. We have (by (1) and b > 1)

¢'(b)=1—4b> —4(1+b—b")?(1 —4b*) — 1 =4 ((1+b—b")(4b> — 1) — b*) > 4 (%(4&?’ —1) - b3)

=4 (b3(42/3 —1) - 4—1/3) >4 (42/3 —1- 4—1/3) = 42/3 (4 — 413 1) > 0.

O



