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Problem 1 Let (an)
∞
n=1 be a sequence with an ∈ {0, 1} for every n. Let F : (−1, 1)→ R be defined by

F (x) =

∞∑
n=1

anx
n

and assume that F
(
1
2

)
is rational. Show that F is the quotient of two polynomials with integer coefficients.

[10 points]

Solution F (1/2) is the base 2 expansion of some real number in the unit interval. By assumption, it is rational
and hence periodic. This implies the existence of some p, n with

ai+p = ai for all i > n .

We may thus write

F (X) = a0 + a1X + · · ·+ anX
n + (an+1X

n+1 + · · ·+ an+pX
n+p)

∞∑
i=0

Xip

= a0 + a1X + · · ·+ anX
n +

an+1X
n+1 + · · ·+ an+pX

n+p

1−Xp

from which the assertion follows. �
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Problem 2 Prove or disprove the following statement. If g : (0, 1)→ (0, 1) is an increasing function and satisfies
g(x) > x for all x ∈ (0, 1), then there exists a continuous function f : (0, 1) → R satisfying f(x) < f(g(x)) for
all x ∈ (0, 1), but f is not an increasing function. [10 points]

Solution The statement is true, here is an example of such f : Let us denote z := g(1/2). Then z > 1
2 . Let us

define f(x) := x for x ∈ (0, 12 ) ∪ (z, 1) and we define f := h on [ 12 , z] where h : [ 12 , z]→ [ 12 , z] is any continuous
function which is not increasing and satisfies h(1/2) = 1/2, h(z) = z and h(x) ∈ (1/2, z) on (1/2, z). Then f is
continuous on (0, 1), it is not increasing and it satisfies f(x) < f(g(x)). In fact, if x ≥ z or x ∈ (0, 1/2) with
g(x) < 1/2 we have

f(g(x)) = g(x) > x = f(x) .

If x ∈ (0, 1/2) with g(x) ≥ 1/2 we have g(x) < z,

f(g(x)) = h(g(x)) ≥ 1/2 > x = f(x) .

If x ∈ [1/2, z), then g(x) ≥ g(1/2) = z,

f(g(x)) = g(x) ≥ z > h(x) = f(x) .

�
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Problem 3 Let n ≥ 2 be an integer. Consider the system of equations

x1 +
2

x2
= x2 +

2

x3
= . . . = xn +

2

x1
. (1)

1. Prove that (1) has infinitely many real solutions (x1, . . . , xn) such that the numbers x1, . . . , xn are distinct.

2. Prove that every solution (x1, . . . , xn) of (1), such that the numbers x1, . . . , xn are not all equal, satisfies
|x1x2 · · ·xn| = 2n/2.

[10 points]

Solution 1 (a) The main idea is to put xk = a · tan
(
t0 +

kπ

n

)
+ b with some real numbers a, b, t0. It suffices

to establish an identity like (
a · tan

(
t− π

n

)
t+ b

)
+

2

a · tan t+ b
= (∗) = const.

Put T = tan t and c = tan
π

n
; then

(∗) = b+ a
T − c
1 + cT

+
2

aT + b
.

Obviously we need a = bc for the common denominator; then

(∗) = b+ bc
T − c
1 + cT

+
2

bcT + b
= 2b+

2− b2(1 + c2)

b(1 + cT )
.

This expression is constant in T if and only if b = ±
√

2

1 + c2
= ±
√
2 cos

π

n
.

Hence, with the choice b =
√
2 cos

π

n
, a = bc =

√
2 sin

π

n
and xk = a ·tan

(
t0 +

kπ

n

)
+b with some t0 ∈ [0, π),

we achieve (1), except for finitely many t0 when one of the tangents is undefined.

(b) Due to the cyclic symmetry we may assume x1 6= x2. Then

x2 − x1 =
2

x2
− 2

x3
=

2

x2x3
· (x3 − x2) =

2

x2x3
· 2

x3x4
· (x4 − x3) = . . . =

2

x2x3
· 2

x3x4
· · · 2

x1x2
(x2 − x1),

x21x
2
2 . . . x

2
n = 2n.

�

Solution 2 (b) Assume that

x1 +
2

x2
= x2 +

2

x3
= . . . = xn +

2

x1
= A

with some real A and let M =

(
A −2
1 0

)
. Then we have

M

(
xk+1

1

)
=

(
Axk+1 − 2
xk+1

)
= xk+1 ·

(
A− 2

xk+1

1

)
= xk+1 ·

(
xk
1

)
.

By applying this for each k, we get

Mn

(
xk
1

)
= x1x2 · · ·xn ·

(
xk
1

)
so,

(
x1
1

)
, . . . ,

(
xn
1

)
are all eigenvectors of the matrix Mn with the common eigenvalue x1x2 · · ·xn. Since the

numbers x1, . . . , xn are not all equal, the vectors

(
x1
1

)
, . . . ,

(
xn
1

)
span the 2-dimensional space. So, Mn must

be diagonal and Mn = x1x2 · · ·xn · I.



From detM = 2 we get 2n = detMn = det(x1x2 · · ·xn · I) = (x1x2 · · ·xn)2, so |x1x2 · · ·xn| = 2n/2.

(a) Choose the number A in such a way that the eigenvalues of M are
√
2 · e±πin . That can be achieved by

choosing A = trM = −2
√
2 cos

π

n
. Then, we achieve Mn = 2n/2I as well. Starting from an arbitrary vector(

xn
1

)
, we can determine

(
xn−1
1

)
, . . . ,

(
x1
1

)
one by one; at the end the cycle will be closed. There are only

finitely many starting values xn when some xk becomes zero by accident. �
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Problem 4 A positive integer t is called a Jane’s integer if t = x3+y2 for some positive integers x and y. Prove
that for every integer n ≥ 2 there exist infinitely many positive integers m such that the set of n2 consecutive
integers {m+ 1,m+ 2, . . . ,m+ n2} contains exactly n+ 1 Jane’s integers. [10 points]

Solution Fix n ≥ 2. Let throughout C(m) denote the number of Czech integers in the set {m + 1,m + 2,
. . . ,m+ n2}. With this notation, we need to show that C(m) = n+ 1 for infinitely many m ∈ N.

Below, we will prove that there exist two infinite sequences of positive integers S = {s1 < s2 < s3 < . . . }
and L = {l1 < l2 < l3 < . . . } such that C(si) = 0 and C(li) ≥ n + 1 for i = 1, 2, 3, . . . . Then, for any s ∈ S,
let us take the smallest l ∈ L satisfying l > s. By the definitions of S and L, the list of nonnegative integers
C(s), C(s + 1), . . . , C(l) starts with the number C(s) = 0 and ends up with the number g = C(l) ≥ n + 1.
Since C(j + 1)− C(j) ∈ {−1, 0, 1}, the list C(s), C(s+ 1), . . . , C(l) contains every integer between 0 and g. In
particular, it contains the integer n + 1. Hence, n + 1 = C(m) for some m in the range s ≤ m ≤ l. Since one
can choose infinitely many disjoint intervals [s, l] as above, this would finish the proof.

Let us show the existence of the sequence S. Suppose that for an even positive integer u each of the intervals
[uk/2 + 1, u(k + 1)/2], where k = 1, 2, . . . , 2u5 − 1, contains at least one Czech integer. Then, the interval
[u/2 + 1, u6] contains at least 2u5 − 1 Czech integers. However, the interval [1, u6] contains at most u5 Czech
integers, since t = x3 + y2 ≤ u6 implies 1 ≤ x ≤ u2 and 1 ≤ y ≤ u3. Thus, 2u5 − 1 ≤ u5, which is impossible.
Hence, at least one of the intervals [uk/2 + 1, u(k + 1)/2] is free of Czech integers. For this particular k, we
have C(uk/2) = 0 if u/2 ≥ n2, so the element s = uk/2 for our sequence S can be selected in each interval
[u/2, u6 − u/2], where u ≥ 2n2 is even.

It remains to show the existence of the sequence L. For n ≥ 3, we can simply take L = {16, 26, 36, . . . }.
Then, the set {i6 + 1, i6 + 2, . . . , i6 + n2} contains n Czech integers (i2)3 + 12, (i2)3 + 22, . . . , (i2)3 + n2 and one
more Czech integer 23 + (i3)2, since 23 is not a square and 23 < n2. Consequently, C(i6) ≥ n+1 for i ∈ N, and
so the proof (for each n ≥ 3) is completed.

For n = 2, we will construct the sequence L = {v31 , v32 , v33 , . . . } with some positive integers v1 < v2 < v3 < . . .
satisfying C(v3i ) ≥ 3. Clearly, the set {v3i + 1, v3i + 2, v3i + 3, v3i + 4} contains two Czech integers v3i + 1 and
v3i +4. In addition, v3i +2 is a Czech integer if, say, v3i +2 = (vi− 1)3+ y2 for y ∈ N (and vi > 1). This equality
can be rewritten in the equivalent form

3(2vi − 1)2 + 9 = (2y)2.

Now, since the fundamental solution of the Pell equation X2 − 3Y 2 = 1 is (X,Y ) = (2, 1), and its odd
powers (2 +

√
3)2i−1 give infinitely many pairs (Xi, Yi) ∈ N2, where X1 = 2 < X2 < X3 < . . . are even,

Y1 = 1 < Y2 < Y3 < . . . are odd, and X2
i − 3Y 2

i = 1, we can select vi = (3Yi + 1)/2 > 1 and y = 3Xi/2. With
this choice, it is clear that

3(2vi − 1)2 + 9 = 3(3Yi)
2 + 9 = 9(3Y 2

i + 1) = 9X2
i = (2y)2,

as claimed. This completes the proof for n = 2. �


