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Problem 1 Let (a,,)22, be a sequence with a,, € {0,1} for every n. Let F': (—1,1) — R be defined by

F(x) = i anx”
n=1

and assume that F (%) is rational. Show that F' is the quotient of two polynomials with integer coefficients.
[10 points]

Solution F(1/2) is the base 2 expansion of some real number in the unit interval. By assumption, it is rational
and hence periodic. This implies the existence of some p,n with

Giyp = a; for all i >n.

We may thus write

(o)
F(X)=ao+ a1 X+ +a, X" + (a1 X" —|—~~-—|—an+pX”+p)ZXip
i=0
an+1Xn+1 + -+ an+an+P

=a+a X+ - F+a, X"+ T xr

from which the assertion follows. ([
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Problem 2 Prove or disprove the following statement. If g: (0,1) — (0, 1) is an increasing function and satisfies
g(x) > x for all x € (0,1), then there exists a continuous function f: (0,1) — R satisfying f(z) < f(g(x)) for
all x € (0,1), but f is not an increasing function. [10 points]

Solution The statement is true, here is an example of such f: Let us denote z := g(1/2). Then z > 1. Let us
define f(z) :=x for z € (0,1) U (2,1) and we define f := h on [, 2] where h : [3, 2] — [3, 2] is any continuous
function which is not increasing and satisfies h(1/2) = 1/2, h(z) = z and h(x) € (1/2,2) on (1/2,z). Then f is
continuous on (0, 1), it is not increasing and it satisfies f(z) < f(g(z)). In fact, if z > z or z € (0,1/2) with

g(x) < 1/2 we have
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Problem 3 Let n > 2 be an integer. Consider the system of equations

2 2 2
L+ —=29+—=...=2, + —. (1)

T2 €T3 Z1
1. Prove that (1) has infinitely many real solutions (x1, . .., x,) such that the numbers x1, . .., z,, are distinct.
2. Prove that every solution (x1,...,%,) of (1), such that the numbers x1,...,x, are not all equal, satisfies

|z1g - - 2| = 27V/2.
[10 points]

Solution 1 (a) The main idea is to put z = a - tan <t0 + W) + b with some real numbers a, b, ty. It suffices
n

to establish an identity like

tan (t— T Vet b) + ——2— — (+) = const
a an " a-tant+b_ = Cconst.

Put T =tant and ¢ = tan z; then
n

T_C+ 2
a .
1+l aT +b

(x) =b+

Obviously we need a = be for the common denominator; then

T—c 2 2—b*(1+c?)
() =b+ber Y s~ 2 e
2
This expression is constant in 7" if and only if b = + e +v/2 cos T
c n

k
Hence, with the choice b = /2 cos E, a = be = +/2sin il and zp = a-tan (to + W) +b with some ¢, € [0, 7),
n n n

we achieve (1), except for finitely many ¢, when one of the tangents is undefined.

(b) Due to the cyclic symmetry we may assume x; # 3. Then

2 2 2 2 2 2 2 2
To—T] = — — — = .(3537(52): . ~(SU47(E3):...: . (x27:p1)’
xT9 I3 XT3 To2X3 X3T4 ToXs X3T4 T1X9

2.2 2 _ on
1Ty ... T, = 2",

a
Solution 2 (b) Assume that
2 2 2
rHt+—=a0+—=...=2,+—=A
T2 Zs3 Z1
. A =2
with some real A and let M = 1 0 ) Then we have
2
Tpt1\ _ [ATp1 —2) (A _ e
M( 1 >< Tkl )ka ( ) T )
By applying this for each k, we get
nfx T
M (f) — X T Ty - <1k>
S0, <$11> e (l‘ln) are all eigenvectors of the matrix M™ with the common eigenvalue x5 - - - z,. Since the
numbers x1,...,x, are not all equal, the vectors (”Tll) ey <x1n> span the 2-dimensional space. So, M"™ must

be diagonal and M"™ = x1xo---xy - [



From det M = 2 we get 2" = det M"™ = det(z129 -2y, - [) = (2122 - - )2, 50 |T120 - - 1| = on/2,

(a) Choose the number A in such a way that the eigenvalues of M are v/2 - e=% . That can be achieved by

choosing A = tr M = —2/2cos T Then, we achieve M™ = 2"/2] as well. Starting from an arbitrary vector

n
<x1n>’ we can determine (x"1_1> e (3311) one by one; at the end the cycle will be closed. There are only

finitely many starting values z,, when some x; becomes zero by accident. O
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Problem 4 A positive integer t is called a Jane’s integer if t = 2%+ for some positive integers x and y. Prove
that for every integer n > 2 there exist infinitely many positive integers m such that the set of n? consecutive
integers {m + 1,m +2,...,m + n?} contains exactly n + 1 Jane’s integers. [10 points]

Solution Fix n > 2. Let throughout C'(m) denote the number of Czech integers in the set {m + 1,m + 2,
...,m+n?}. With this notation, we need to show that C(m) = n + 1 for infinitely many m € N.

Below, we will prove that there exist two infinite sequences of positive integers S = {s1 < s9 < 53 < ...}
and L = {l; <ly <l3 < ...} such that C(s;) =0 and C(l;) > n+1fori=1,2,3,.... Then, for any s € S,
let us take the smallest [ € L satisfying [ > s. By the definitions of S and L, the list of nonnegative integers
C(s),C(s+1),...,C(l) starts with the number C(s) = 0 and ends up with the number ¢ = C(I) > n + 1.
Since C(j + 1) — C(j) € {—1,0,1}, the list C(s),C(s+1),...,C(l) contains every integer between 0 and g¢. In
particular, it contains the integer n + 1. Hence, n + 1 = C(m) for some m in the range s < m < [. Since one
can choose infinitely many disjoint intervals [s, (] as above, this would finish the proof.

Let us show the existence of the sequence S. Suppose that for an even positive integer u each of the intervals
[uk/2 4+ 1,u(k + 1)/2], where k = 1,2,...,2u’ — 1, contains at least one Czech integer. Then, the interval
[u/2 + 1,u®] contains at least 2u® — 1 Czech integers. However, the interval [1,u%] contains at most u®> Czech
integers, since t = 23 + 3% < w8 implies 1 < 2z < w? and 1 < y < w3, Thus, 2u® — 1 < «®, which is impossible.
Hence, at least one of the intervals [uk/2 + 1,u(k + 1)/2] is free of Czech integers. For this particular k, we
have C(uk/2) = 0 if u/2 > n?, so the element s = uk/2 for our sequence S can be selected in each interval
[u/2,u® — u/2], where u > 2n? is even.

It remains to show the existence of the sequence L. For n > 3, we can simply take L = {16,26,36 .. .}.
Then, the set {i% + 1,45 +2,...,i% + n?} contains n Czech integers (i?)3 + 12, (i%)3 +22,...,(i?)3 + n? and one
more Czech integer 22 + (i3)?, since 22 is not a square and 23 < n?. Consequently, C(i®) > n+ 1 for i € N, and
so the proof (for each n > 3) is completed.

For n = 2, we will construct the sequence L = {v$,v3,v3, ...} with some positive integers v; < vy < v3 < ...
satisfying C'(v3) > 3. Clearly, the set {v} + 1,03 + 2,03 + 3,v? + 4} contains two Czech integers v? + 1 and
v3 + 4. In addition, v} + 2 is a Czech integer if, say, v3 +2 = (v; — 1) +4? for y € N (and v; > 1). This equality
can be rewritten in the equivalent form

3(2v; — 1)2 +9 = (2y)%

Now, since the fundamental solution of the Pell equation X? — 3Y? = 1is (X,Y) = (2,1), and its odd
powers (2 4+ v/3)%~! give infinitely many pairs (X;,Y;) € N2, where X; = 2 < Xy < X3 < ... are even,
Y1 =1<Yy<Y3;<...areodd, and X? — 3Y;? = 1, we can select v; = (3Y; +1)/2 > 1 and y = 3X;/2. With
this choice, it is clear that

3(20; — 1) +9 = 3(3Y;)* + 9 = 9(3Y2 + 1) = 9X7 = (2y)?,

as claimed. This completes the proof for n = 2. (]



