The 27th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 31st March 2017 Category II

Problem 1 Let $(a_n)_{n=1}^{\infty}$ be a sequence with $a_n \in \{0,1\}$ for every n. Let $F: (-1,1) \to \mathbb{R}$ be defined by

$$F(x) = \sum_{n=1}^{\infty} a_n x^n$$

and assume that $F(\frac{1}{2})$ is rational. Show that F is the quotient of two polynomials with integer coefficients. [10 points]

Problem 2 Prove or disprove the following statement. If $g: (0,1) \to (0,1)$ is an increasing function and satisfies g(x) > x for all $x \in (0,1)$, then there exists a continuous function $f: (0,1) \to \mathbb{R}$ satisfying f(x) < f(g(x)) for all $x \in (0,1)$, but f is not an increasing function. [10 points]

Problem 3 Let $n \ge 2$ be an integer. Consider the system of equations

$$x_1 + \frac{2}{x_2} = x_2 + \frac{2}{x_3} = \dots = x_n + \frac{2}{x_1}.$$
 (1)

- 1. Prove that (1) has infinitely many real solutions (x_1, \ldots, x_n) such that the numbers x_1, \ldots, x_n are distinct.
- 2. Prove that every solution (x_1, \ldots, x_n) of (1), such that the numbers x_1, \ldots, x_n are not all equal, satisfies $|x_1x_2\cdots x_n| = 2^{n/2}$.

[10 points]

Problem 4 A positive integer t is called a Jane's integer if $t = x^3 + y^2$ for some positive integers x and y. Prove that for every integer $n \ge 2$ there exist infinitely many positive integers m such that the set of n^2 consecutive integers $\{m + 1, m + 2, ..., m + n^2\}$ contains exactly n + 1 Jane's integers. [10 points]