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Problem 1 Let a, b and c be positive real numbers such that a+ b+ c = 1. Show that(
1

a
+

1

bc

)(
1

b
+

1

ca

)(
1

c
+

1

ab

)
≥ 1728 .

[10 points]

Solution By using the AM-GM inequality, we deduce that
1

a
+

1

bc
=

1

a
+

1

3bc
+

1

3bc
+

1

3bc
≥ 4

1
4
√
27ab3c3

and

1

27
=

(
a+ b+ c

3

)3

≥ abc. Therefore,

(
1

a
+

1

bc

)(
1

b
+

1

ca

)(
1

c
+

1

ab

)
≥ 64 · 1

4
√
27ab3c3

1
4
√
27a3bc3

1
4
√
27a3b3c

=
64

4
√
39(abc)7

≥ 64
4
√

39(3−3)7
= 64

4
√
312 = 64 · 27 = 1728.

�

Another Solution If we replace 1 with a+ b+ c and denote k =
1

a
+

1

b
+

1

c
, then(

1

a
+
a+ b+ c

bc

)(
1

b
+
a+ b+ c

ca

)(
1

c
+
a+ b+ c

ab

)
=

(
1

a
+

1

b
+

1

c
+
a

bc

)
·
(
1

a
+

1

b
+

1

c
+

b

ca

)(
1

a
+

1

b
+

1

c
+

c

ab

)
=
(
k +

a

bc

)(
k +

b

ca

)(
k +

c

ab

)
= k3 + k2

(
c

ab
+

b

ca
+
a

bc

)
+ k

(
1

a2
+

1

b2
+

1

c2

)
+

1

abc
.

From the inequality between arithmetic and harmonic means for the positive numbers a, b and c it follows that

1

3
=
a+ b+ c

3
≥ 3

1

a
+

1

b
+

1

c

=
3

k
⇔ k ≥ 9.

From the first Solution we already know that
1

abc
≥ 27. In the end we have

L.H.S ≥ 93 + 92 · 3
3
√
abc

+
27

3
√
(abc)2

+
1

abc
≥ 93 + 93 + 27 · 9 + 27 = 1728.
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Problem 2 Let X be a set and let P(X) be the set of all subsets of X. Let µ : P(X)→ P(X) be a map with
the property that µ(A∪B) = µ(A)∪µ(B) whenever A and B are disjoint subsets of X. Prove that there exists
a set F ⊂ X such that µ(F ) = F . [10 points]

Solution First we will show that µ is monotonic, ie. µ(A) ⊂ µ(B) for any A ⊂ B. Indeed, as B = (B \A)∪A,
we have

µ(B) = µ(B \A) ∪ µ(A) ⊃ µ(A) .

Now let F =
{
A ⊂ X : µ(A) ⊂ A

}
and F =

⋂
F =

{
x ∈ X : ∀A∈F x ∈ A

}
. We have of course

F =
⋂
F ⊂ A for any A ∈ F , hence by monotonicity µ(F ) ⊂ µ(A). But µ(A) ⊂ A, so µ(F ) ⊂ A for all A ∈ F ,

which gives µ(F ) ⊂
⋂
F = F .

On the other hand the monotonicity of µ gives µ
(
µ(F )

)
⊂ µ

(
F
)
, hence µ(F ) ∈ F , so F =

⋂
F ⊂ µ(F ).

Both inclusions give the equality µ(F ) = F . �
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Problem 3 For n ≥ 3 find the eigenvalues (with their multiplicities) of the n× n matrix

1 0 1 0 0 0 . . . . . . 0 0
0 2 0 1 0 0 . . . . . . 0 0
1 0 2 0 1 0 . . . . . . 0 0
0 1 0 2 0 1 . . . . . . 0 0
0 0 1 0 2 0 . . . . . . 0 0
0 0 0 1 0 2 . . . . . . 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 . . . . . . 2 0
0 0 0 0 0 0 . . . . . . 0 1


.

[10 points]

Solution Notice that A = B2 with

B =



0 1 0 0 . . . 0 0 0
1 0 1 0 . . . 0 0 0
0 1 0 1 . . . 0 0 0
0 0 1 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 1 0 1
0 0 0 0 . . . 0 1 0


.

Lemma If λ is an eigenvalue of A, then λ2 is an eigenvalue of A2.

Proof A2v = A(Av) = Aλv = λAv = λ2v. �

It is sufficient to determine eigenvalues of B. Characteristic polynomial Sn(λ) = det(λI − B) of matrix B
satisfies the following reccurence relation

S1 = λ, S2 = λ2 − 1 and
Sn(λ) = λSn−1(λ)− Sn−2(λ), n ≥ 3.

We have

Sn(λ) = Un

(
λ

2

)
,

with Un being a Chebyshev polynomial of the second kind which is given by the reccurence relation

Un+1(x)− 2xUn(x) + Un−1(x) = 0, U0(x) = 1, U1(x) = 2x,

or explicitly with

Un(x) =
sin((n+ 1) arccosx)

sin(arccosx)
, |x| < 1.

Lemma (Gershgorin circle theorem) Every eigenvalue of a complex n × n matrix A lies within at least
one of the disks

D = {z ∈ C : |z − aii| ≤ Ri},

with Ri =

n∑
j=1,j 6=i

|aij |.

Proof Let λ be an eigenvalue of A and x its corresponding eigenvector. Choose i such that |xi| = maxj |xj |.
Since x 6= 0, |xi| > 0. From Ax = λx, looking at the ith component we have

(λ− aii)xi =
∑
j 6=i

aijxj .



Taking the norm of both sides gives

|λ− aii| =

∣∣∣∣∣∣
∑
j 6=i

aijxj
xi

∣∣∣∣∣∣ ≤
∑
j 6=i

|aij |.

�

From Gershgorin circle theorem we conclude that each eigenvalue λi of B satisfies |λi| ≤ 1.
For λ

2 = cos θ we get

Un

(
λ

2

)
=

sin((n+ 1)θ)

sin θ
.

From equation Sn(λ) = 0 it follows that sin((n+ 1) arccos λ2 ) = 0,

(n+ 1) arccos
λ

2
= kπ, k ∈ Z. (1)

We need first n solutions of the equation (1). Therefore,

λk(B) = 2 cos
kπ

n+ 1
, k = 1, . . . , n

and

λk(A) = 4 cos2
kπ

n+ 1
, k = 1, . . . , n.

�
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Problem 4 Let f : [0,∞)→ R be a continuously differentiable function satisfying

f(x) =

∫ x

x−1
f(t) dt

for all x ≥ 1. Show that f has bounded variation on [1,∞), i.e.∫ ∞
1

|f ′(x)|dx <∞ .

[10 points]

Solution Since f is continuous, the right-hand side of

f(x) =

∫ x

x−1
f(t)dt

is differentiable and the derivative is equal to f(x) − f(x − 1). So, f is differentiable on (1,+∞) and f ′(x) =
f(x) − f(x − 1). Let us denote An := max{f(x) : x ∈ [n, n + 1]}, Bn := min{f(x) : x ∈ [n, n + 1]} and
dn = An −Bn for n = 0, 1, . . . . Then |f ′| ≤ dn on [n+ 1, n+ 2] and∫ +∞

1

|f ′(x)|dx =

∞∑
n=1

∫ n+1

n

|f ′(x)|dx ≤
∞∑
n=1

dn−1.

So, it is sufficient to show that
∑∞
n=1 dn−1 converges. We will complete the proof in three steps.

Claim 1. An ≤ An−1 and Bn ≥ Bn−1 for all n and if there is an equality for some n, then f ≡ An on [n,+∞).

Claim 1 implies that dn is a nonincreasing sequence of nonnegative numbers. If dn0
= 0 for some n0 ∈ N,

then
∑
dn−1 obviously converges. Otherwise, dn > 0 for all n and we complete the proof by showing the

following two Claims.

Claim 2. It holds that An+2 ≤ An − d5n
128d4n−1

, Bn+2 ≥ Bn +
d5n

128d4n−1
, and dn+2 ≤ dn − d5n

64d4n−1
.

Claim 3.
∑∞
n=1 dn−1 < +∞.

Proof of Claim 1. Let us assume An > An−1. There exists x ∈ [n, n + 1] such that f(x) = An and since f is
continuous, the set {x ∈ [n, n+ 1] : f(x) = An} has a minimum m. But then

f(m) =

∫ m

m−1
f(x)dx <

∫ m

m−1
Andx = An,

contradiction. If An = An−1 and let m = min{x ∈ [n, n+ 1] : f(x) = An}, then we have

An = f(m) =

∫ m

m−1
f(t)dt ≤

∫ m

m−1
Andt = An

and it follows that f(x) = An for all x ∈ [m− 1,m]. Hence, m = n and f ≡ An on [n− 1, n] and by induction
on [n− 1,+∞). The inequalities for B’s can be proven analogously. �

Proof of Claim 2. Let us fix n ≥ 1 and show the first inequality. Since |f ′| ≤ dn−1 on [n, n+ 1] and f attains

values An and Bn on [n, n + 1], it follows that
∫ n+1

n
f(t)dt ≤ An − d2n

2dn−1
=: K1 (graph of f must connect

lines y ≡ An, y ≡ Bn and this connection must lie below the straight line with tangent dn−1). It follows that
f(n+ 1) ≤ K1 and since f ≤ An and f ′ ≤ dn on [n+ 1, n+ 2], we have f ≤ h1 on [n+ 1, n+ 2], where

h1(x) :=

{
K1 + dn(x− n− 1) for x ∈ [n+ 1, x1]

An for x ∈ [x1, n+ 2]
, x1 := n+ 1 +

dn
2dn−1

.

Further,

f(n+ 2) ≤
∫ n+2

n+1

h1(x) = An −
d3n

8d2n−1
=: K2



and since f ≤ An and f ′ ≤ dn+1 ≤ dn on [n+ 2, n+ 3], we obtain that f ≤ h2 on [n+ 2, n+ 3], where

h2(x) :=

{
K2 + dn(x− n− 2) for x ∈ [n+ 2, x2]

An for x ∈ [x2, n+ 3]
, x2 := n+ 2 +

d2n
8d2n−1

(x1 and x2 are taken in such a way that h1 and h2 are continuous on [n+1, n+2], resp. [n+2, n+3]). Clearly,
K2 ≥ K1, therefore f(x) ≤ h1(x) ≤ h2(x+ 1) on [n+ 1, n+ 2]. It follows that for all x ∈ [n+ 2, n+ 3] we have

f(x) =

∫ x

x−1
f(t) ≤

∫ n+2

x−1
h2(t+ 1) +

∫ x

n+2

h2(t) =

∫ n+3

n+2

h2(x) = An −
d5n

128d4n−1
.

Hence, An+2 ≤ An − d5n
128d4n−1

. The inequality for Bn+2 is similar and inequality for dn+2 is then an immediate

consequence. �

Proof of Claim 3. Dividing the inequality for dn+2 by dn we obtain

dn+2

dn
≤ 1− d4n

64d4n−1
≤ 1− d4n

64d4n−2

and therefore
dn+2

dn−2
=
dn+2

dn
· dn
dn−2

≤
(
1− d4n

64d4n−2

)
dn
dn−2

(1)

Differentiating g(x) = x(1− x4/64) we obtain g′(x) = 1− 5x4/64 > 0 on [0, 1], hence the right-hand side of (1)
is maximal if dn

dn−2
= 1, i.e.

dn+2

dn−2
≤ 1− 1

64
=

63

64
.

It follows that each of the sequences (d4k+i)
∞
k=0, i = 0, 1, 2, 3 is dominated by di 63

n

64n , hence
∑
di < +∞. �


