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Problem 1 Let a,b and c be positive real numbers such that a + b+ ¢ = 1. Show that
1 1 1 1 1 1
=)=+ =])=+—=)>1728.
<a+bc) <b+ca> <c+ab> 2 1728
[10 points]
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Solution By using the AM-GM inequality, we deduce that — + — =
a

- — 4 — 4+ — >4
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) > abc. Therefore,
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= 64V/312 = 64 .27 = 1728.
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Another Solution If we replace 1 with a + b+ ¢ and denote k = — + — + —, then
a c

b
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—t—— )+t —— ) -+ ——
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a b ¢ be a b ¢ ca a b ¢ ab
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From the inequality between arithmetic and harmonic means for the positive numbers a, b and c it follows that

o

1 b
§:a+3+021 ?1’ 1:%@1429.
a b ¢

1
From the first Solution we already know that e > 27. In the end we have
abe

3 27 1
— >0934934927.9427=1728.
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Problem 2 Let X be a set and let P(X) be the set of all subsets of X. Let u: P(X) — P(X) be a map with
the property that u(AU B) = u(A) U pu(B) whenever A and B are disjoint subsets of X. Prove that there exists
a set F' C X such that u(F) =F. [10 points]

Solution First we will show that y is monotonic, ie. u(A) C p(B) for any A C B. Indeed, as B = (B\ A)U A,
we have

w(B) = pu(B\ A) U pu(A) O p(A).

Now let F = {A C X :ull) C A} and F = F = {m € X : Vyer x € A}. We have of course
F =F C A for any A € F, hence by monotonicity u(F) C u(A). But u(A) C A, so u(F) C A for all A € F,
which gives u(F) c F =F.

On the other hand the monotonicity of p gives pu(u(F)) C p(F), hence u(F) € F,so F = (F C u(F).

Both inclusions give the equality u(F) = F. |
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Problem 3 For n > 3 find the eigenvalues (with their multiplicities) of the n x n matrix

1 01 0 0 O 0 0
0 2 01 00 0 0
1 02 010 0 0
01 0 2 01 0 0
001 0 2 0 0 0
00 0 1 0 2 0 0
0 000 0O 2 0
0 0 0 0 00 0 1]
[10 points]
Solution Notice that A = B2 with
0 1 0 0 0 0 0]
1 0 1 0 0 0 0
01 0 1 0 0 O
0 010 0 0O
B = .
0 0 0O 01 0
0 0 0O 1 0 1
L0 0 0 O 0 1 0 |

Lemma If ) is an eigenvalue of A, then \? is an eigenvalue of AZ.
Proof A%v = A(Av) = Al = MAv = Ao, D
It is sufficient to determine eigenvalues of B. Characteristic polynomial S, (\) = det(AI — B) of matrix B
satisfies the following reccurence relation
S1 =X S =X —1and
Sn(A) = ASp—1(A) — Sp—2(N), n>3.

-0, (2)

with U,, being a Chebyshev polynomial of the second kind which is given by the reccurence relation

We have

Ups1(x) = 20U (2) + Up—1(x) =0, Up(z) =1,U(x) = 2z,

or explicitly with
sin((n 4 1) arccos x)

Un(m) = s |l‘| < 1.

sin(arccos z)
Lemma (Gershgorin circle theorem) Every eigenvalue of a complex n X n matrix A lies within at least
one of the disks
D={z€C:|z-a;| <R;},
n
j=1,j#i

Proof Let X\ be an eigenvalue of A and x its corresponding eigenvector. Choose ¢ such that |z;| = max; |z;|.
Since = # 0, |x;| > 0. From Az = Az, looking at the ith component we have

()\ — CL“)[L'l = Zaij:cj.

J#i



Taking the norm of both sides gives

aos
A —aul = D=L <D ayl.
-

g J#i

From Gershgorin circle theorem we conclude that each eigenvalue \; of B satisfies |\;| < 1.

For % = cos 6 we get

U, (A) _ sin((n + 1)9).

2 sin 0

From equation S, (A) = 0 it follows that sin((n + 1) arccos ) = 0,

(n+1) arccos% =km, keZ.

We need first n solutions of the equation (1). Therefore,

Ae(B) =2co k=1,.
k,( ) COS 17 s ,n
and k
A (A) =4 ()2 k=1,...,n.
k( ) €08 7’L—‘r17 ’ ’
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Problem 4 Let f: [0,00) — R be a continuously differentiable function satisfying

fw = [ soa

for all x > 1. Show that f has bounded variation on [1,00), i.e.

/10Cf'(x)dx<oo.

[10 points]

Solution Since f is continuous, the right-hand side of
f@ = [ o
z—1

is differentiable and the derivative is equal to f(z) — f(z — 1). So, f is differentiable on (1,+o00) and f/(z) =
f(z) — f(x —1). Let us denote A, := max{f(z) : = € [n,n+ 1]}, B, := min{f(x) : = € [n,n+ 1]} and
d, =A, — By forn=0,1,.... Then |f'| <d, on [n+ 1,n + 2] and

+oo > n+1 00
/ 1 (@)dz = Z/ P @)ldz <> dns.
1 n=1v" n=1

So, it is sufficient to show that Y | d,,_1 converges. We will complete the proof in three steps.
Claim 1. A, < A,_1 and B,, > B, for alln and if there is an equality for some n, then f = A, on [n,+00).

Claim 1 implies that d,, is a nonincreasing sequence of nonnegative numbers. If d,, = 0 for some ng € N,
then > d,_1 obviously converges. Otherwise, d,, > 0 for all n and we complete the proof by showing the
following two Claims.

5 5
Claim 2. It holds that Ayss < Ay — 1yeit—, Buya > Bn + tye—, and dyso < dyy —
n—1 n—1

d5
64d1_ -

Claim 3. > 7 d,—1 < +00.

Proof of Claim 1. Let us assume A,, > A,,_1. There exists « € [n,n + 1] such that f(z) = A,, and since f is
continuous, the set {z € [n,n + 1] : f(x) = A,} has a minimum m. But then

F(m) = /mml flx)dz < /mm1 Apdz = Ay,

contradiction. If A, = A,,_; and let m = min{z € [n,n + 1] : f(x) = A, }, then we have

Ap = f(m) = /m1 f(t)dt < /mlAndt = A,

and it follows that f(z) = A, for all z € [m — 1,m]. Hence, m = n and f = A, on [n — 1,n] and by induction
on [n —1,400). The inequalities for B’s can be proven analogously. (]
Proof of Claim 2. Let us fix n > 1 and show the first inequality. Since |f’| < d,,—1 on [n,n + 1] and f attains
values A,, and B, on [n,n + 1], it follows that f:“ fydt < A, — 2;1—3:1 =: K; (graph of f must connect

lines y = A,,, y = B, and this connection must lie below the straight line with tangent d,_1). It follows that
fn+1) < K; and since f < A, and [’ <d, on [n+ 1,n+ 2], we have f < h; on [n+ 1,n + 2], where

Ki+dy(x—n—1) forxze€n+1,x] dn,
h = , =n+1+ .
1(@) {An for x € [z1,n + 2] s 2dp—1

Further,
n+2 d3

f(n + 2) S / hl(,CE) = An — 2” = K2

n+1 8d

n—1




and since f < A, and [’ < d,41 <d, on [n+ 2,n + 3], we obtain that f < hy on [n+ 2,n + 3|, where

Ky +dy(x —n—2) forz € [n+ 2, ] d?
h = , =n+2+ "
2(%) {An forz € [wa,n 43 2 82 _,

(z1 and x5 are taken in such a way that hy and hy are continuous on [n+1,n+ 2], resp. [n+2,n+ 3]). Clearly,
Ky > K, therefore f(z) < hi(z) < ha(z+1) on [n+ 1,n + 2]. It follows that for all = € [n + 2,n + 3] we have

z n+2 T nt3 d,
flz) = /fl ft) < /rl P+ 1)+ /n+2 halt) = /n+2 al) = = 128d;

n—1

d"L
Hence, An+2 S An — w
n—

consequence. O

. The inequality for B, ;2 is similar and inequality for d,, 2 is then an immediate

Proof of Claim 3. Dividing the inequality for d, o by d,, we obtain

4 4
dpio <1- dz <1- dz
dp, 64d;, _, 64d,, _o
and therefore .
dn+2 _ dn+2 . dn < 1_ dz dn (1)
dn72 dn dn72 64dn72 dn72

Differentiating g(z) = z(1 — 2*/64) we obtain ¢'(z) = 1 — 52*/64 > 0 on [0, 1], hence the right-hand side of (1)

is maximal if -%=— = 1, i.e.
dn—Z ?

dnte oy 1 _ 63
dp—o — 64 64

It follows that each of the sequences (dax+:)72, ¢ = 0,1,2,3 is dominated by dig%:, hence Y d; < +o0. O



