The 26th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 8th April 2016 Category I

Problem 1 Let $f: \mathbb{R} \to (0, \infty)$ be a continuously differentiable function. Prove that there exists $\xi \in (0, 1)$ such that

$$e^{f'(\xi)}f(0)^{f(\xi)} = f(1)^{f(\xi)}.$$

[10 points]

Solution The equality is equivalent to

$$e^{f'(\xi)} = \left(\frac{f(1)}{f(0)}\right)^{f(\xi)}$$

and

$$\frac{f'(\xi)}{f(\xi)} = \ln f(1) - \ln f(0).$$

The existence of $\xi \in (0,1)$ satisfying the last equality follows from Lagrange's mean value theorem with the function $\phi(x) = \ln f(x)$, $x \in [0,1]$.

The $26^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $8^{\rm th}$ April 2016 Category I

Problem 2 Find all positive integers n such that $\varphi(n)$ divides $n^2 + 3$. $(\varphi(n)$ denotes Euler's totient function, i.e. the number of positive integers $k \le n$ coprime to n.) [10 points] **Solution** Answer: n = 1, 2, 3, 5, 9, 21,

If n is prime, then $\varphi(n)=n-1$ divides $n^2+3=(n-1)(n+1)+4$, thus n-1 divides 4 and we get answers n=2,3,5. Let now n>1 be composite and $n=\prod_{i=1}^k p_i^{\alpha_i}$ has k distinct prime factors. Then $\varphi(n)=\prod_{i=1}^k p_i^{\alpha_i-1}(p_i-1)$ is divisible by 2^k , thus n^2+3 is divisible by 2^k . It implies that n is odd and $k\leq 2$, since 8 never divides n^2+3 . Next, if $\alpha_i\geq 2$, then p_i divides $\varphi(n)$, thus p_i divides n^2+3 and n=3. In this case 9 does not divide n^2+3 , hence 9 does not divide $\varphi(n)$, i.e. $\alpha_i=2$. So, we have three cases: n=9 (this is another answer), n=9p for prime $p\neq 3$ and n=pq for different odd primes p,q.

- 1) n = 9p. Then $\varphi(n) = 6(p-1)$, $n^2 + 3 = 81(p-1)(p+1) + 84$. So, 3(p-1) divides 84, thus p-1 divides 28, but for possible p = 5, 29 we again get that 8 divides $\varphi(n)$.
- 2) n=pq. If q=3 we see that $\varphi(n)=2(p-1)$ divides $n^2+3=9(p-1)(p+1)+12$, so 2(p-1) divides 12, for p=7 we get the answer n=21. Now assume that p>3, q>3. Then 3 does not divide n^2+3 , thus 3 does not divide $\varphi(n)=(p-1)(q-1)$. It implies that both p and q are congruent to 2 modulo 3, and we may write p=2a+1, q=2b+1, where a,b are congruent to 2 modulo 3. We get that $\varphi(n)=4ab$ divides $n^2+3=(4ab+2a+2b+1)^2+3=4ab(4ab+1)+4(a^2+b^2+a+b+1)$, i.e. ab divides $a^2+b^2+a+b+1$. Let us prove that it is impossible when a,b are congruent to 2 modulo 3. Assume the contrary and choose a pair of such a,b with minimal value of a+b. Obviously a,b are coprime, so we may suppose that a>b (here we use that a=b=1 is forbidden modulo 3). The number $a=b^2+b+1$ is divisible by $a=b^2+b+1=ma$. The number $a=b^2+b+1$ and $a=b^2+b+1=ma$. The number $a=b^2+b+1$ and $a=b^2+b+1=ma$. The number $a=b^2+b+1$ and $a=b^2+b+1=ma$. Since $a=b^2+b+1$ and $a=b^2+b+1=ma$. Since $a=b^2+b+1=ma$. Thus both $a=b^2+b+1$

The 26th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 8th April 2016 Category I

Problem 3 Let $d \geq 3$ and let $A_1 \dots A_{d+1}$ be a simplex in \mathbb{R}^d . (A simplex is the convex hull of d+1 points not lying in a common hyperplane.) For every $i=1,\dots,d+1$ let O_i be the circumcentre of the face $A_1 \dots A_{i-1}A_{i+1} \dots A_{d+1}$, i.e. O_i lies in the hyperplane $A_1 \dots A_{i-1}A_{i+1} \dots A_{d+1}$ and it has the same distance from all points $A_1,\dots,A_{i-1},A_{i+1},\dots,A_{d+1}$. For each i draw a line through A_i perpendicular to the hyperplane $O_1 \dots O_{i-1}O_{i+1} \dots O_{d+1}$. Prove that either these lines are parallel or they have a common point. [10 points] **Solution** If O_1,\dots,O_{d+1} lie in the hyperplane, our lines are parallel. If not, they form a simplex which has a circumcentre Q. Let O be circumcentre of $A_1 \dots A_{d+1}$, let P be symmetric to O in a point Q. Let's prove that all our lines pass through P. That is, PA_i must be perpendicular to O_jO_k if i,j,k are different. Denote by M_i a midpoint OA_i . Then A_iP is parallel to a middle line M_iQ of triangle OA_iP_i . We have $M_iO_j=M_iO_k=OA_i/2$, thus both points M_i , Q lie in a perpendicular bisector to the segment O_jO_k , hence $M_iQ \perp O_jO_k$ as desired. \square

The 26th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 8th April 2016 Category I

Problem 4 Find the value of the sum $\sum_{n=1}^{\infty} A_n$, where

$$A_n = \sum_{k_1=1}^{\infty} \cdots \sum_{k_n=1}^{\infty} \frac{1}{k_1^2} \frac{1}{k_1^2 + k_2^2} \cdots \frac{1}{k_1^2 + \dots + k_n^2}.$$

[10 points]

Solution We will show more general fact:

Theorem Let (a_n) be an increasing sequence of real numbers greater or equal than 1, such that then series $\sum_{n=1}^{\infty} \frac{1}{a_n}$ converges to S. Then

$$\sum_{n_1=1}^{\infty} \cdots \sum_{n_1=1}^{\infty} \frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_k}} = \frac{1}{k!} S^k$$

for every $k = 1, 2, \dots$

Proof [I.] by induction on k

For k=1 the equality $\sum_{n} \frac{1}{a_n} = S$ is obvious. Assume now that the equality holds for $k=1,2,\ldots,m-1$ and denote

$$\sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} \frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_k}} = \mathcal{S}_k.$$

We have

$$\frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}} = \frac{(a_{n_1} + a_{n_2}) - a_{n_1}}{a_{n_2}} \frac{1}{a_{n_1}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}}$$

$$= \frac{1}{a_{n_2}} \frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}} - \frac{1}{a_{n_2}} \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}}.$$

The last term sums to S_m and the first equals to

$$\frac{1}{a_{n_2}} \frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}} = \frac{(a_{n_1} + a_{n_2} + a_{n_3}) - a_{n_1}}{a_{n_2} + a_{n_3}} \frac{1}{a_{n_2}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}}$$

$$= \frac{1}{a_{n_2}} \frac{1}{a_{n_2} + a_{n_3}} \frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2} + a_{n_3} + a_{n_4}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}} - \frac{1}{a_{n_2}} \frac{1}{a_{n_2} + a_{n_3}} \frac{1}{a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_1} + a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}}$$

Once again the last term sums to S_m . Repeating the above transformations leads to

$$\frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_m}} = \frac{1}{a_{n_2}} \frac{1}{a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_2} + \cdots + a_{n_m}} \frac{1}{a_{n_1}} - \frac{1}{a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_2} + a_{n_3}} \cdots \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_2} + a_{n_2}} \cdots \frac{1}{a_{n_2} + a_{n_2}} \cdots \frac{1}{a_{n_2} + a_{$$

So adding the above equality gives

$$\mathcal{S}_m = \mathcal{S}_{m-1} \cdot \mathcal{S}_1 - (m-1)\mathcal{S}_m,$$

hence

$$S_m = \frac{1}{m} S_{m-1} S_1 = \frac{1}{m} \frac{1}{(m-1)!} S^{m-1} S = \frac{1}{m!} S^m.$$

Proof [II.] in the case $a_n \ge n$

Let $F(x) = \sum_{n=1}^{\infty} x^{a_n}$. As $a_n \ge n$, the function F is well-defined and continuous for $x \in (-1,1)$. We have $\int_{0}^{1} F(x) \frac{dx}{x} = \sum_{n=1}^{\infty} \frac{1}{a_n} - 0 = S$. Moreover

$$F(x_1x_2\cdots x_k) F(x_2\cdots x_k)\cdots F(x_k) = \sum_{n_1=1}^{\infty}\cdots \sum_{n_k=1}^{\infty} x_1^{a_{n_1}} x_2^{a_{n_1}+a_{n_2}}\cdots x_k^{a_{n_1}+\cdots+a_{n_k}},$$

hence

$$\sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} \frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_k}} = \int_0^1 \cdots \int_0^1 F(x_1 x_2 \cdots x_k) F(x_2 \cdots x_k) \cdots F(x_k) \frac{dx_1}{x_1} \frac{dx_2}{x_2} \cdots \frac{dx_k}{x_k}.$$

Let now $S(x) = \int_{0}^{x} F(t) \frac{dt}{t}$. We have of course $\frac{d}{dx} S(\alpha x)^n = n S(\alpha x)^{n-1} \frac{F(\alpha x)}{x}$. So

$$\int_{0}^{1} \cdots \int_{0}^{1} F(x_{1}x_{2} \cdots x_{k}) F(x_{2} \cdots x_{k}) \cdots F(x_{k}) \frac{dx_{1}}{x_{1}} \frac{dx_{2}}{x_{2}} \cdots \frac{dx_{k}}{x_{k}}$$

$$= \int_{0}^{1} \left(\cdots \left(\int_{0}^{1} F(x_{1}x_{2} \cdots x_{k}) \frac{dx_{1}}{x_{1}} \right) \cdots F(x_{k}) \right) \frac{dx_{k}}{x_{k}}$$

$$= \int_{0}^{1} \left(\cdots \left(\int_{0}^{1} S(x_{1}x_{2} \cdots x_{k}) \Big|_{x_{1}=0}^{x_{1}=1} F(x_{2} \cdots x_{k}) \frac{dx_{2}}{x_{2}} \right) \cdots F(x_{k}) \right) \frac{dx_{k}}{x_{k}}$$

$$= \dots = \frac{1}{k!} S^{k}.$$

Corollary In the notation of the theorem we have $\sum_{n=1}^{\infty} A_n = e^S - 1$, where

$$A_k = \sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} \frac{1}{a_{n_1}} \frac{1}{a_{n_1} + a_{n_2}} \cdots \frac{1}{a_{n_1} + \cdots + a_{n_k}}.$$

Solution: It is known that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. From the Corollary we get directly that the sum in question is equal to $e^{\pi^2/6} - 1$.