The 26th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 8th April 2016 Category II

Problem 1 Let a, b and c be positive real numbers such that a + b + c = 1. Show that

$$\left(\frac{1}{a} + \frac{1}{bc}\right) \left(\frac{1}{b} + \frac{1}{ca}\right) \left(\frac{1}{c} + \frac{1}{ab}\right) \ge 1728.$$
[10 points]

•

Problem 2 Let X be a set and let $\mathcal{P}(X)$ be the set of all subsets of X. Let $\mu: \mathcal{P}(X) \to \mathcal{P}(X)$ be a map with the property that $\mu(A \cup B) = \mu(A) \cup \mu(B)$ whenever A and B are disjoint subsets of X. Prove that there exists a set $F \subset X$ such that $\mu(F) = F$. [10 points]

Problem 3 For $n \geq 3$ find the eigenvalues (with their multiplicities) of the $n \times n$ matrix

Γ1	0	1	0	0	0			0	0]
		0						0	0
1	0	2	0	1	0			0	0
0	1	0		0	1			0	0
0	0	1	0	2	0			0	0
0	0	0	1	0	2			0	0
:	÷	÷	÷	÷	÷	·		÷	:
:	÷	÷	÷	÷	÷		·	÷	:
0	0	0	0	0	0			2	0
0	0	0	0	0	0			0	1

[10 points]

Problem 4 Let $f: [0, \infty) \to \mathbb{R}$ be a continuously differentiable function satisfying

$$f(x) = \int_{x-1}^{x} f(t) \,\mathrm{d}t$$

for all $x \ge 1$. Show that f has bounded variation on $[1, \infty)$, i.e.

$$\int_1^\infty |f'(x)| \, \mathrm{d}x < \infty \, .$$

[10 points]