The 26th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 8th April 2016 Category I

Problem 1 Let $f \colon \mathbb{R} \to (0,\infty)$ be a continuously differentiable function. Prove that there exists $\xi \in (0,1)$ such that

$$e^{f'(\xi)} f(0)^{f(\xi)} = f(1)^{f(\xi)}.$$

[10 points]

Problem 2 Find all positive integers n such that $\varphi(n)$ divides $n^2 + 3$. ($\varphi(n)$ denotes Euler's totient function, i.e. the number of positive integers $k \le n$ coprime to n.) [10 points]

Problem 3 Let $d \ge 3$ and let $A_1 \ldots A_{d+1}$ be a simplex in \mathbb{R}^d . (A simplex is the convex hull of d + 1 points not lying in a common hyperplane.) For every $i = 1, \ldots, d + 1$ let O_i be the circumcentre of the face $A_1 \ldots A_{i-1}A_{i+1} \ldots A_{d+1}$, i.e. O_i lies in the hyperplane $A_1 \ldots A_{i-1}A_{i+1} \ldots A_{d+1}$ and it has the same distance from all points $A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{d+1}$. For each *i* draw a line through A_i perpendicular to the hyperplane $O_1 \ldots O_{i-1}O_{i+1} \ldots O_{d+1}$. Prove that either these lines are parallel or they have a common point. [10 points]

Problem 4 Find the value of the sum $\sum_{n=1}^{\infty} A_n$, where

$$A_n = \sum_{k_1=1}^{\infty} \cdots \sum_{k_n=1}^{\infty} \frac{1}{k_1^2} \frac{1}{k_1^2 + k_2^2} \cdots \frac{1}{k_1^2 + \dots + k_n^2}.$$

[10 points]