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Problem 1 Let f : (0,∞)→ R be a differentiable function. Assume that

lim
x→∞

(
f(x) +

f ′(x)

x

)
= 0 .

Prove that
lim
x→∞

f(x) = 0 .

Solution Assume that

lim
x→∞

(
f(x) +

f ′(x)

x

)
= 0.

Fix ε > 0. Then there exists x0 > a such that∣∣∣∣f(x) +
f ′(x)

x

∣∣∣∣ < ε

2

for all x > x0. Take x > x0 and define two functions g, h : [x0, x]→ R by

g(x) = e
x2

2 f(x) and h(x) = e
x2

2 .

Now by applying Cauchy’s mean value theorem we get

g(x)− g(x0)

h(x)− h(x0)
=
g′(η)

h′(η)
= f(η) +

f ′(η)

η
,

where η ∈ (x0, x). Hence ∣∣∣f(x)− f(x0)e
1
2 (x

2
0−x

2)
∣∣∣ =

∣∣∣∣f(η) +
f ′(η)

η

∣∣∣∣ · ∣∣∣1− e
1
2 (x

2
0−x

2)
∣∣∣ .

Consequently, for all x > x0 one has

|f(x)| <
∣∣∣f(x0)e

1
2 (x

2
0−x

2)
∣∣∣+

ε

2

∣∣∣1− e
1
2 (x

2
0−x

2)
∣∣∣ < |f(x0)|e 1

2 (x
2
0−x

2) +
ε

2
.

Since lim
x→∞

e
1
2 (x

2
0−x

2) = 0, there exists x̃ > x0 such that

|f(x0)|e 1
2 (x

2
0−x

2) <
ε

2

for all x > x̃. Finally, taking into account the above considerations, we infer that

|f(x)| < ε

for all x > x̃, which implies the desired conclusion. �
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Problem 2 Let p be a prime number and let A be a subgroup of the multiplicative group F∗p of the finite
field Fp with p elements. Prove that if the order of A is a multiple of 6, then there exist x, y, z ∈ A satisfying
x+ y = z.

Solution Obviously the existence of x, y, z ∈ A with x+ y = z is equivalent to the existence of x′, y′ ∈ A with
x′ + y′ = 1 (just divide by z). First observe that A is cyclic, so 6 | d implies the existence of some a ∈ A of
order 6, hence a6 = 1. This yields a3 = −1, so that we obtain

a+ a3 + a5 = a(1 + a2 + a4) = a
1− a6

1− a2
= 0,

from which we conclude
a+ a5 = −a3 = 1.

Setting x′ := a, y′ := a5 gives the desired equality. �
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Problem 3 Let k be a positive even integer. Show that

k/2∑
n=0

(−1)n
(
k + 2

n

)(
2(k − n) + 1

k + 1

)
=

(k + 1)(k + 2)

2
.

Solution
Lemma For any positive integer k and −1 < x < 1 the following formula holds(

1

1− x

)k

=

∞∑
n=0

(
k + n− 1

k − 1

)
xn.

Proof For k = 1 we have
1

1− x
=

∞∑
n=0

xn =

∞∑
n=0

(
n

0

)
xn.

Assume inductively that (
1

1− x

)k

=

∞∑
n=0

(
k + n− 1

k − 1

)
xn.

Then for k + 1, by using the Cauchy product for two infinite series, we obtain(
1

1− x

)k+1

=

(
1

1− x

)k (
1

1− x

)
=

( ∞∑
n=0

(
k + n− 1

k − 1

)
xn

)( ∞∑
n=0

xn

)
=

∞∑
n=0

(
n∑

m=0

(
k +m− 1

k − 1

)
xn

)
.

But, by using once again the induction principle, one can prove that
n∑

m=0

(
k +m− 1

k − 1

)
=

(
k + n

k

)
.

Finally, we obtain that
∞∑

n=0

(
n∑

m=0

(
k +m− 1

k − 1

)
xn

)
=

∞∑
n=0

(
k + n

k

)
xn,

which completes the proof of the lemma. �

Observe that

(1− x)k+2 =
(1− x2)k+2

(1 + x)k+2
= (1− x2)k+2 1

(1 + x)k+2
,

for −1 < x < 1. On the other hand,

(1− x)k+2 =

k+2∑
n=0

(−1)n
(
k + 2

n

)
xn,

(1− x2)k+2 1

(1 + x)k+2
=

(
k+2∑
n=0

(
k + 2

n

)
(−1)nx2n

)( ∞∑
n=0

(
k + n+ 1

k + 1

)
(−1)nxn

)
.

Consequently, by comparing the corresponding coefficients of xk in the above equalities we obtain the following
equation:

(−1)k
(
k + 2

k

)
=

k/2∑
n=0

(
k + 2

n

)
(−1)n

(
k + (k − 2n) + 1

k + 1

)
(−1)k−2n,

which implies the desired equality:

k/2∑
n=0

(−1)n
(
k + 2

n

)(
2(k − n) + 1

k + 1

)
=

(
k + 2

k

)
.

�
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Problem 4 Let 0 < a < b and let f : [a, b]→ R be a continuous function with
∫ b

a
f(t) dt = 0. Show that∫ b

a

∫ b

a

f(x)f(y) ln(x+ y) dxdy ≤ 0 .

Solution

Lemma (well-known) ∫ ∞
0

e−t − e−Kt

t
dt = logK

for every K > 0.

Proof Let

h(K) =

∫ ∞
0

e−t − e−Kt

t
dt.

From h(1) = 0 and h′(K) =

∫ ∞
0

e−Kt dt =
1

K
we get

h(K) =

∫ K

1

dk

k
= logK.

�

To prove the problem statement, take the sum of the identities∫ b

a

∫ b

a

f(x)f(y)

(∫ ∞
0

e−t − e−(x+y)t

t
dt

)
dxdy =

∫ b

a

∫ b

a

f(x)f(y) log(x+ y) dxdy∫ b

a

∫ b

a

f(x)f(y)

(∫ ∞
0

−e−t + e−(x+
1
2 )t

t
dt

)
dxdy =

∫ b

a

∫ ∞
0

f(x)
−e−t + e−(x+

1
2 )t

t
dtdx ·

∫ b

a

f(y) dy = 0 and

∫ b

a

∫ b

a

f(x)f(y)

(∫ ∞
0

−e−t + e−(y+
1
2 )t

t
dt

)
dxdy =

∫ b

a

∫ ∞
0

f(y)
−e−t + e−(y+

1
2 )t

t
dtdx ·

∫ b

a

f(x) dx = 0.

As can be seen,∫ b

a

∫ b

a

f(x)f(y) log(x+ y) dxdy =

∫ b

a

∫ b

a

f(x)f(y)

(∫ ∞
0

−e−t + e−(x+
1
2 )t + e−(y+

1
2 )t − e−(x+y)t

t
dt

)
dxdy

= −
∫ ∞
0

∫ b

a

∫ b

a

f(x)f(y)
(e−

1
2 t − e−xt)(e− 1

2 t − e−yt)
t

dxdy dt

= −
∫ ∞
0

(∫ b

a

f(x)
(
e−

1
2 t − e−xt

)
dx

)2
dt

t
≤ 0.

�


