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Problem 1 Let f: (0,00) — R be a differentiable function. Assume that

lim (f(x)+f/(x)> =0.

Tr—ro0 €T
Prove that
lim f(z) =0.
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Problem 2 Let p be a prime number and let A be a subgroup of the multiplicative group F, of the finite
field F), with p elements. Prove that if the order of A is a multiple of 6, then there exist x,y, z € A satisfying
r+y==z.

Problem 3 Let k be a positive even integer. Show that
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Problem 4 Let 0 < a <b and let f: [a,b] — R be a continuous function with f; f(t)dt = 0. Show that
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