The 22nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 30th March 2012 Category I

Problem 1 Let $f: [0,1] \to [0,1]$ be a differentiable function such that $|f'(x)| \neq 1$ for all $x \in [0,1]$. Prove that there exist unique points $\alpha, \beta \in [0,1]$ such that $f(\alpha) = \alpha$ and $f(\beta) = 1 - \beta$.

Problem 2 Determine all 2×2 integer matrices A having the following properties:

- 1. the entries of A are (positive) prime numbers,
- 2. there exists a 2×2 integer matrix B such that $A = B^2$ and the determinant of B is the square of a prime number.

Problem 3 Determine the smallest real number C such that the inequality

$$\frac{x}{\sqrt{yz}} \cdot \frac{1}{x+1} + \frac{y}{\sqrt{zx}} \cdot \frac{1}{y+1} + \frac{z}{\sqrt{xy}} \cdot \frac{1}{z+1} \leq C$$

holds for all positive real numbers x, y and z with

$$\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 1 \, .$$

Problem 4 Find all positive integers n for which there exists a positive integer k such that the decimal representation of n^k starts and ends with the same digit.