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Problem 1 Let n > k and let A1, . . . , Ak be real n× n matrices of rank n− 1. Prove that

A1 · . . . ·Ak 6= 0 .

Solution Consider two linear operators V
g→ V

f→ V of an n-dimensional vector space V. If Ker(f) ⊂ Im(g),
then dim (Im (fg)) = dim (Im(g))− dim (Ker(f)) . But we have the inequality

dim (Im(fg)) ≥ dim (Im(g))− dim (Ker(f))

in the general case. Applying the correspondence between linear operators and matrices, we obtain the inequality
rank (AB) ≥ rankB − (n− rankA) for every two matrices A and B. The inequality rank (A1 · . . . ·Ak) ≥
(rank (A1) + . . .+ rank (Ak))− (k − 1)n can be deduced from the inequality rank (AB) ≥ rankA+ rankB − n
by the simple induction. We obtain the inequality rank (A1 · . . . ·Ak) ≥ k (n− 1) − (k − 1)n = n − k in our
case. Thus, if k < n then rank (A1 · . . . ·Ak) ≥ 1 and the product A1 · . . . ·Ak can not be equal to zero. �
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Problem 2 Let k be a positive integer. Compute

∞∑
n1=1

∞∑
n2=1

· · ·
∞∑

nk=1

1

n1n2 . . . nk(n1 + . . .+ nk + 1)
.

Solution

∞∑
n1=1

∞∑
n2=1

· · ·
∞∑

nk=1

1

n1n2 . . . nk(n1 + . . .+ nk + 1)
=

∞∑
n1=1

∞∑
n2=1

· · ·
∞∑

nk=1

1

n1n2 . . . nk

∫ 1

0

xn1+...+nk dx =

=

∫ 1

0

∞∑
n1=1

∞∑
n2=1

· · ·
∞∑

nk=1

xn1+...+nk

n1n2 . . . nk
dx =

∫ 1

0

(− log(1−x))k dx = [1−x = e−u] =

∫ ∞
0

uke−u du = Γ(k+1) = k!
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Problem 3 Let p and q be complex polynomials with deg p > deg q and let f(z) =
p(z)

q(z)
. Suppose that all

roots of p lie inside the unit circle |z| = 1 and that all roots of q lie outside the unit circle. Prove that

max
|z|=1

|f ′(z)| > deg p− deg q

2
max
|z|=1

|f(z)|.

Solution Without loss of generality we can assume that the maximum of |f | is attained at 1.

Let p(z) = a
n1∏
k=1

(z − ck) and q(z) = b
n2∏
`=1

(z − d`) where n1 = deg p and n2 = deg q. Then

f ′(z)

f(z)
=

n1∑
k=1

1

z − ck
−

n2∑
`=1

1

z − d`
.

Since |ck| < 1 and |d`| > 1 for all k and `, we have

Re
1

1− ck
>

1

2

and

Re
1

1− dk
<

1

2
.

Therefore,
|f ′(1)|
|f(1)|

≥ Re f
′(1)

f(1)
> n1 ·

1

2
− n2 ·

1

2
=

deg p− deg q

2

and

max
|z|=1

|f ′(z)| ≥ |f ′(1)| = |f
′(1)|
|f(1)|

· |f(1)| ≥ deg p− deg q

2
max
|z|=1

|f(z)| .
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Problem 4 Let Q[x] denote the vector space over Q of polynomials with rational coefficients in one variable
x. Find all Q-linear maps Φ : Q[x] → Q[x] such that for any irreducible polynomial p ∈ Q[x] the polynomial
Φ(p) is also irreducible.

(A polynomial p ∈ Q[x] is called irreducible if it is non-constant and the equality p = q1q2 is impossible for
non-constant polynomials q1, q2 ∈ Q[x].)

Solution
The answer is Φ(p(x)) = ap(bx + c) for some non-zero rationals a, b and some rational c. It is clear that

such operators preserve irreducibility. Let’s prove that any irreducibility-preserving operator is of such form.
We start with the following

Lemma 1 Assume that f, g ∈ Π are two polynomials such that for all rational numbers c the polynomial f+cg
is irreducible. Then either g ≡ 0, or f is non-constant linear polynomial and g is non-zero constant.

Proof Let g(x0) 6= 0 for some rational x0. Then for c = −f(x0)/g(x0) we have (f + cg)(x0) = 0, so the
polynomial f + cg is divisible by x − x0. Hence f + cg = C(x − x0) for some non-zero rational C. Choose
x1 6= x0 such that g(x1) 6= 0. Then for c1 = −f(x1)/g(x1) 6= c (since f(x1) + cg(x1) = C(x1− x0) 6= 0) we have
f+c1g = C1(x−x1). Subtracting we get that (c1−c)g is linear, hence g is linear, hence f too. If f(x) = ax+b,
g(x) = a1x+ b1, then a 6= 0 (since f is irreducible) and if a1 6= 0, then for c = −a/a1 the polynomial f + cg is
constant, hence not irreducible. So a1 = 0 and we are done. �

Now denote gk = Φ(xk).

Lemma 2 g0 is non-zero constant and g1 is non-constant linear function.

Proof Since x+c is irreducible for any rational c, we get that g1+cg0 is irreducible for any rational c. By Lemma
1 we have that either g0 = 0 or g0 is constant and g1 is linear non-constant. Assume that g0 = 0. Note that for
any rational α one may find rational β such that x2 +αx+ β is irreducible, hence g2 +αg1 = Φ(x2 +αx+ β) is
irreducible for any rational α. It follows by Lemma 1 that g1 is constant, hence not irreducible. A contradiction,
hence g0 6= 0 and we are done. �

Denote g0 = C, g1(x) = Ax + B. Consider the new operator p(x) → C−1Φ(p(A−1Cx − A−1B)). This
operator of course preserves irreducibility, consider it instead Φ.

Now g0 = 1, g1(x) = x and our goal is to prove that gn = xn for all positive integers n. We use induction by
n. Assume that n ≥ 2 and gk(x) = xk is already proved for k = 0, 1, . . . , n− 1. Denote h(x) = gn(x)− xn and
assume that h is not identical 0. For arbitrary monic irreducible polynomial f of degree n we have Φ(f) = f+h,
hence f + h is irreducible aswell. Choose rational x0 such that h(x0) 6= 0, our goal is to find irreducible f such
that f(x0) = −h(x0) and hence f + h has a root in x0.

There are many ways to do it, consider one of them, via Eisenstein’s criterion. Recall it.

Eisenstein’s criterion Assume that f(x) = anx
n+ · · ·+a0 is a polynomial with rational coefficients and p is a

prime number so that ak = bk/ck with coprime integers bk, ck such that bk is divisible by p for k = 0, 1, . . . , n−1,
both bn and cn are not divisible by p and b0 is not divisible by p2. Then f is irreducible.

Without loss of generality, x0 = 0 (else denote x−x0 by new variable). Then we want to find an irreducible
polynomial f(x) = xn + an−1x

n−1 + · · ·+ a1x− h(0). Denote −h(0) = u/v for coprime positive integer v and
non-zero integer u. Take L = 6uv and consider the prime divisor p of the number vLn/u − 1. Clearly, p does
not divide 6uvL. Then consider the polynomial (x+ L)n − Ln + u/v. If vLn/u− 1 is not divisible by p2, then
we are done by Eisenstein’s criterion (with new variable y = x + L). If vLn/u − 1 is divisible by p2, then add
px to our polynomial and now Eisenstein’s criterion works.

Unless h(x) = −xn + . . . , the polynomial f +h is not linear and so is not irreducible. If n ≥ 3, then we may
add px2 or 2px2 to our polynomial f and get non-linear f + h (but still irreducible f). Finally, if n = 2, and
h(x) = −x2 + ax + b, then choose irreducible polynomial of the form f(x) = x2 − ax + c and get f + h being
constant (hence not irreducible).

The induction step and the whole proof are finished. �


