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Problem 1

(a) Is there a polynomial P(x) with real coefficients such that

(-t

for all positive integers k?

(b) Is there a polynomial P(x) with real coefficients such that

P(%) - 2k1+1’

for all positive integers k?

Solution (a) YES. It suffices to define a polynomial W (z) as follows
W(z) =2z + 1.
(b) NO. Suppose that such a polynomial W (z) exists. Define a polynomial F'(x) as follows

F(z)=(z+2)W(z) — z.

() (o) Lo

for all k£ € N. Hence, the polynomial F(x) admits infinitely many zeros. Consequently,

Then

(x+2)W(z) —2z =0,

for all x € R. But this implies that

for all x € R — a contradiction.
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Problem 2 Let (a,,)22, be unbounded and strictly increasing sequence of positive reals such that the arithmetic
mean of any four consecutive terms a, Gn+1, Gnt2, Gnt3 belongs to the same sequence. Prove that the sequence
an+1/a, converges and find all possible values of its limit.

Solution Since a,, < ant1 < apya < apny3, one has

1
A < z(an + ap+1 + apyo + (In+3) < Ap43,

thus (ap + ant1 + ant2 + ant3)/4 € {ans1,an2}. Hence for any n € N precisely one of the two identities
ap + Apt1 + Apy2 + Gpy3 = 4an+1 (1)

or
ap + ap41 + Ap+-2 + Ap43 = 4an+2 (2)

holds. Let A be the set of indices n € N for which (1) holds and let B be the set of indices n € N for which (2)
holds. Clearly, AUB =N, AN B = (). We shall prove that one of A or B is finite. Indeed, suppose the contrary,
that both A and B are infinite. Since A and B partition N, there exists a positive integer k, such that k € B,
k+1¢€ A. From (1) and (2), it follows that

O + Qg1 + Qg2 + Qg3 = dagpo and Q11+ Qg2 + Qpy3 + apga = dagpo.

Hence a = ag14, which contradicts the fact that a,, is strictly increasing. We now consider two cases.
Case 1) The set A is infinite, the set B is finite. By (1), the sequence a,, satisfies a linear recurrence
Gp — 3Ap41 + Apy2 + apys = 0 for all n > ng. The characteristic polynomial of the linear recurrence

AN =X+ A2 =3+ 1=\ —1DA\+21 1)
hasroots A\y =1, Ao = —1 — \@, A3 = —1 4+ /2. Hence
an2014-02(—1—\/5)"4-03(—1-‘1-\/5)", C,C5,C3 €R, n > ng.

Observe that Ay < —1, 0 < A3 < 1. If Cy # 0, then lim,,_, |a,| = co and a,, alternates in sign for n sufficiently
large which contradicts the monotonicity property. If Cy = 0, then the sequence a,, is bounded, which leads to
the contradiction again. Thus we reject the case one.

Case 2) The set A is finite, the set B is infinite. By (1), the sequence a,, satisfies a linear recurrence
Gp + Gpt1 — 3ap+2 + ants = 0 for all n > ng. The characteristic polynomial of the linear recurrence

AN =X =3 N+ A+1=0N-1)\ =22 -1)
has roots A1 =1, Ao =1 — \/i, A3 = 1 + /2. Hence
an:C’1+C’2(1f\f2)n+C’3(1+\@)", Cl,CQ,Og ER, n > ng.

Note that —1 < Ay < 0, A3 > 1. If C3 < 0, then the sequence a,, is bounded from above. Hence C5 > 0 so
an ~ C3AY as n — oo . The standard limit calculation now shows that b,, converges and has limit value

lim b, = lim 2L — g =142,

n— 00 n—0o Gy
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Problem 3 Prove that
2h+2 0o k
Zxk 1+z :Z(fl)kxi
— 2k 42)2 (1 — 2k+1)2
k=0

for all x € (—1,1).

Solution We use the binomial series

to get
s 1 4 g2k+2 oo 0o o
ka 2h+2)2 Zx 14 2%k+2) Z (j+ 1)a?k+2) = Z Z (1 4+ 226+2)(j + 1)2@R+2) =
=0 o 3=0 7=0 k=0
o0 o )
— 2 2k+2 2k x B
=2 G+ Da ]Zx L 2?2228 =y + 1) < Y EE) 1—x2j+3>_
j=0 k=0 7=0
Z m2g+1 Z :C2]+1 Z 1— 1_2]+1 = _a Zlog(l — x? )
j=0 j=1 j=0 =0
and
0o o N\k 0o 0o 0o 0o ) ] j
S s = S S e = S g Yt = 3 T
k=0 k=0 j=0 s = =

d j+1
=% Zlog(l +aT).

Jj=0

The proposition now follows by logarithmic differentiation of the classical identity

oo 1 oo
I i = L0+,
n=0 n=1

which can be proved as follows:

10_;j[1+x 1_‘[1_1.271:1_‘[201(1_1,270: Hzol(l_an) :ﬁl 1

ookt 1—2zn Hn 1(1 _ 1‘”) Hn 1(]_ _ $2n) Hzozl(l _ x2n71) ottt p2n—1’
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Problem 4 Let a,b,c be elements of finite order in some group. Prove that if a='ba = b?, b=2¢cb? = ¢? and

c3ac® = a2, then a = b = ¢ = e, where e is the unit element.

Solution Let r(g) denote the rank of g € G. Assume that the assertion does not hold. Let p be the smallest
prime number dividing r(a)r(b)r(c). Without loss of generality we can assume that p | 7(b) (if p | r(a) or
p | r(c), then the reasoning is the same). Then there exists k such that r(b) = pk. Let d := b*. Then r(d) = p.

Lemma For any m € N, a~™da™ = d*".

Proof First we prove that
atda = d.

Indeed, multiplying the equation a~'ba = b? k-times with itself we get
(a™ba)(a"tba) - -- (a" ba) = b2b? - - - b

and hence
a—lbka _ (b2)k — (bk)Q_

Now, the assertion of the above lemma follows from the following calculations:

d=ad*a! = alad?*a™1)?a™ = a?d¥a % = zzz(acl2¢fl)22(f2 =d3d¥a 3 = =gmd¥ 0. (1)

Observe that Fermat’s little theorem implies that 27 = 2 (mod p). Consequently,
a Pda? = d*" = d?® = a 'da. (2)
Since ged(r(a),p — 1) = 1, there exist integers r and s such that
r-r(a)+s-(p—1)=1 (3)

From (2) we get
a~ =D ggtr=1 = g

for all [ € Z (see the calculations in (1)). Finally, putting [ := s, we obtain
d = a—s(p—l)das(p—l) (i) arr(a)—lda—rr(a)+1 — a_lda — d2

which implies that d = e, a contradiction. (Il



