The 21st Annual Vojtěch Jarník International Mathematical Competition Ostrava, 31st March 2011 Category II

Problem 1 Let n > k and let A_1, \ldots, A_k be real $n \times n$ matrices of rank n - 1. Prove that

$$A_1 \cdot \ldots \cdot A_k \neq 0$$
.

Problem 2 Let k be a positive integer. Compute

$$\sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} \frac{1}{n_1 n_2 \cdots n_k (n_1 + \dots + n_k + 1)}.$$

Problem 3 Let p and q be complex polynomials with deg $p > \deg q$ and let $f(z) = \frac{p(z)}{q(z)}$. Suppose that all roots of p lie inside the unit circle |z| = 1 and that all roots of q lie outside the unit circle. Prove that

$$\max_{|z|=1} |f'(z)| > \frac{\deg p - \deg q}{2} \max_{|z|=1} |f(z)|.$$

Problem 4 Let $\mathbb{Q}[x]$ denote the vector space over \mathbb{Q} of polynomials with rational coefficients in one variable x. Find all \mathbb{Q} -linear maps $\Phi : \mathbb{Q}[x] \to \mathbb{Q}[x]$ such that for any irreducible polynomial $p \in \mathbb{Q}[x]$ the polynomial $\Phi(p)$ is also irreducible.

(A polynomial $p \in \mathbb{Q}[x]$ is called irreducible if it is non-constant and the equality $p = q_1q_2$ is impossible for non-constant polynomials $q_1, q_2 \in \mathbb{Q}[x]$.)