The 21st Annual Vojtěch Jarník International Mathematical Competition Ostrava, 31st March 2011 Category I

Problem 1

(a) Is there a polynomial P(x) with real coefficients such that

$$P\left(\frac{1}{k}\right) = \frac{k+2}{k}$$

for all positive integers k?

(b) Is there a polynomial P(x) with real coefficients such that

$$P\left(\frac{1}{k}\right) = \frac{1}{2k+1}$$

for all positive integers k?

Problem 2 Let $(a_n)_{n=1}^{\infty}$ be an unbounded and strictly increasing sequence of positive reals such that the arithmetic mean of any four consecutive terms a_n , a_{n+1} , a_{n+2} , a_{n+3} belongs to the same sequence. Prove that the sequence a_{n+1}/a_n converges and find all possible values of its limit.

Problem 3 Prove that

$$\sum_{k=0}^{\infty} x^k \frac{1+x^{2k+2}}{(1-x^{2k+2})^2} = \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{(1-x^{k+1})^2}$$

for all $x \in (-1, 1)$.

Problem 4 Let a, b, c be elements of finite order in some group. Prove that if $a^{-1}ba = b^2$, $b^{-2}cb^2 = c^2$ and $c^{-3}ac^3 = a^2$ then a = b = c = e, where e is the unit element.