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Problem 1 Let a and b be given positive coprime integers. Then for every integer n there exist integers x, y
such that

n = ax + by .

Prove that n = ab is the greatest integer for which xy ≤ 0 in all such representations of n. [10 points]

Solution The greatest such integer is a · b.
If ab = ax + by, then a | y and b | x. Thus if x > 0, then x ≥ b and by = ab− ax ≤ ab− ab = 0, so y ≤ 0.
Now let n > ab. Let n = ax+ by be the representation such that x is positive and as small as possible. Then

since n = a(x − b) + b(y + a) is another representation of n, x − b must not be positive and therefore x ≤ b.
Hence by = n− ax ≥ n− ab > 0, so y > 0. �
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Problem 2 Prove or disprove that if a real sequence (an) satisfies an+1−an → 0 and a2n−2an → 0 as n →∞,
then an → 0. [10 points]

Solution The proposition is true.
From the condition an+1−an → 0 we conclude by Cesaro’s lemma that an

n → 0. Since the sequence a2n−2an

must be bounded, we know that
C := sup{|a2n − 2an| : n ∈ N} < ∞ .

Considering the identity
an

n
− an·2m+1

n · 2m+1
=

m∑
k=0

( an·2k

n · 2k
− an·2k+1

n · 2k+1

)
we conclude by letting m →∞ and n fixed that

an

n
=

∞∑
k=0

( an·2k

n · 2k
− an·2k+1

n · 2k+1

)
.

Now from ∣∣∣an

n

∣∣∣ ≤ ∞∑
k=0

∣∣∣ an·2k

n · 2k
− an·2k+1

n · 2k+1

∣∣∣ ≤ ∞∑
k=0

C

n · 2k+1
=

C

n

we infer that |an| ≤ C, i. e. the sequence (an) must be bounded.
Now suppose that (an) does not converge to 0. Then, by Bolzano’s theorem, there must exist a subsequence
(ank

) converging to some number a 6= 0. From the hypothesis we conclude in turn that

a2nk
→ 2a ,

a4nk
→ 4a ,

...

which would result in an unbounded set of accumulation points a, 2a, 4a, . . . of (an) in contradiction to (an)
being bounded. �
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Problem 3 Let A and B be two n× n matrices with integer entries such that all of the matrices

A , A + B , A + 2B , A + 3B , . . . , A + (2n)B

are invertible and their inverses have integer entries, too. Show that A + (2n + 1)B is also invertible and that
its inverse has integer entries. [10 points]

Solution Suppose that the n × n matrix M has integer entries and M has inverse matrix M−1 with integer
entries. Then M ·M−1 = I implies det M · det M−1 = 1. Thus det M = 1 or det M = −1. Set M(t) = A + tB.
The determinant of the matrix M(t)

det M(t) = det (A + tB) = det A + · · ·+ tn det B

is the polynomial of degree n in t. The polynomial det M(t) takes values 1 or −1 at points t = 0, 1, 2, . . . , 2n.
Hence det M(t) takes the value 1 or the value −1 at least n + 1 times. This implies that det M(t) is a
constant polynomial: M(t) = 1 or M(t) = −1 for all t. Consequently, det M(2n + 1) = ±1. Hence the matrix
A + (2n + 1)B is invertible. By Cramer’s formula, the inverse matrix has integer entries, since the determinant
is equal to 1 or −1. �
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Problem 4 Let f : [0, 1] → R be a function satisfying

|f(x)− f(y)| ≤ |x− y|

for every x, y ∈ [0, 1]. Show that for every ε > 0 there exists a countable family of rectangles (Ri) of dimensions
ai × bi, ai ≤ bi, in the plane such that{

(x, f(x)) : x ∈ [0, 1]
}
⊂

⋃
i

Ri and
∑

i

ai < ε .

(The edges of the rectangles are not necessarily parallel to the coordinate axes.) [10 points]

Solution Assume without loss of generality that f(0) = 0, thus |f(x)| ≤ 1 for x ∈ [0, 1].
First notice that if C ⊂ [0, 1] is a set of Lebesgue measure no larger than ε/3, then it can be covered by a

countable family of intervals Ii of total measure at most ε/2, and thus {(x, f(x) : x ∈ C} is covered by rectangles
Ii × [−1, 1], and their total width is at most ε/2.
Notice that as we are interested in only one dimension of the rectangle, and the graph we are to covered is

bounded, we may as well think in terms of covering with strips instead of rectangles.
For now on fix ε > 0. We shall introduce a few definitions. Let x, y ∈ [0, 1]. We say that the interval [x, y]

is covered, if |f(z)−α(z)| < ε|x− y| for all z ∈ [x, y], where α is the linear function meeting f at x and y. The
inclination of an interval [x, y], denoted i(x, y), is the number |f(x) − f(y)|/|x − y|. Notice the inclination of
any interval cannot be larger than 1 as f is 1-Lipschitz.
Now we prove the following lemma.

Lemma There exists a constant δ > 0 such that the following holds. Consider any interval [x, y] ⊂ [0, 1]. Then
either [x, y] is covered, or there exists a subinterval [x′, y′] ⊂ [x, y] of length |y′ − x′| > δ|x− y| and inclination
at least i(x, y) + ε.

Proof The proof is pretty simple. If [x, y] is not covered, then there exists a point z ∈ [x, y] with |f(z)−α(z)| >
ε|x− y|. Without loss of generality assume f(x) < f(y) and f(z)− α(z) > ε|x− y|. The interval [x, z] in this
case has inclination

i(x, z) = |f(x)− f(z)|/|x− z| = f(z)− f(x)
z − x

≥ α(z) + ε(y − x)− f(x)
z − x

=
f(y)−f(x)

y−x (z − x) + ε(y − x)

z − x

=
f(y)− f(x)

x− y
+ ε

y − x

z − x
≥ i(x, y) + ε.

The cases of f(x) > f(y) and (or) f(z)− α(z) < −ε|x− y| are similar. Moreover we have

f(z) > α(z) + ε|x− y| = f(x)± i(x, y)(z − x) + ε(y − x) .

Thus
2|z − x| ≥ |f(z)− f(x)|+ i(x, y)|z − x| ≥ f(z)− f(x)± i(x, y)(z − x) ≥ ε|x− y| ,

thus |z − x| ≥ ε|x−y|
2 , which finishes the proof of the lemma with δ = ε/2. �

Take a constant n > 1/ε. If begin with an interval [x, y] and apply the lemma n times, we end up with
an interval of length at least |x − y|δn, which is either covered, or has inclination at least nε — the second
is impossible, however, as the inclination of any interval is at most 1. Thus for any interval we can find its
subinterval of length at least δn times the length of the original, which is covered. Thus we have the following
corollary: for any interval [x, y] ⊂ [0, 1] there exists a covered subinterval [x′, y′] of [x, y] of length at least
c|x− y| for some fixed constant c.
Now we are ready to solve the problem. We shall construct a family of disjoint intervals Ci ⊂ [0, 1], with

the Lebesgue measure of [0, 1] \
⋃

Ci no larger than ε. Each of these intervals will be covered, and thus we
shall be able to cover the whole graph of f by rectangles — each interval is covered, and thus the appropriate
piece of the graph is contained in a rectangle of width at most 2ε, while the remaining part can be covered by
a countable family of vertical rectangles of total width at most 2ε. As ε was arbitrary, this will end the proof.
The construction of Cis follows directly from the corollary — we choose C0 = [x0, y0] to be the interval given

by the corollary for [0, 1], then C1 and C2 the intervals for [0, x0] and [y0, 1] respectively, then (in the third
step), C3, C4, C5 and C6 are given for [0, x1], [y1, x0], [y0, x2] and [y2, 1] respectively, and so on. In each step a
constant fraction of measure is removed, thus after sufficiently many steps no more than ε measure remains. �


