The 20th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 25th March 2010 Category II

Problem 1 Let a and b be given positive coprime integers. Then for every integer n there exist integers x, y such that

$$n = ax + by.$$

Prove that n = ab is the greatest integer for which $xy \le 0$ in all such representations of n. [10 points]

Problem 2 Prove or disprove that if a real sequence (a_n) satisfies $a_{n+1} - a_n \to 0$ and $a_{2n} - 2a_n \to 0$ as $n \to \infty$, then $a_n \to 0$. [10 points]

Problem 3 Let A and B be two $n \times n$ matrices with integer entries such that all of the matrices

A, A+B, A+2B, A+3B, ..., A+(2n)B

are invertible and their inverses have integer entries, too. Show that A + (2n+1)B is also invertible and that its inverse has integer entries. [10 points]

Problem 4 Let $f: [0,1] \to \mathbb{R}$ be a function satisfying

$$|f(x) - f(y)| \le |x - y|$$

for every $x, y \in [0, 1]$. Show that for every $\varepsilon > 0$ there exists a countable family of rectangles (R_i) of dimensions $a_i \times b_i$, $a_i \leq b_i$, in the plane such that

$$\left\{ (x, f(x)) : x \in [0, 1] \right\} \subset \bigcup_i R_i \quad and \quad \sum_i a_i < \varepsilon \,.$$

(The edges of the rectangles are not necessarily parallel to the coordinate axes.)

[10 points]