The 20th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 25th March 2010 Category I

Problem 1

a) Is it true that for every bijection $f \colon \mathbb{N} \to \mathbb{N}$ the series

$$\sum_{n=1}^{\infty} \frac{1}{nf(n)}$$

is convergent?

b) Prove that there exists a bijection $f: \mathbb{N} \to \mathbb{N}$ such that the series

$$\sum_{n=1}^{\infty} \frac{1}{n+f(n)}$$

is convergent.

(\mathbb{N} is the set of all positive integers.)

Problem 2 Let A and B be two complex 2×2 matrices such that $AB - BA = B^2$. Prove that AB = BA. [10 points]

Problem 3 Prove that there exist positive constants c_1 and c_2 with the following properties:

a) For all real k > 1,

$$\left|\int_0^1 \sqrt{1-x^2} \,\cos(kx) \,\mathrm{d}x\right| < \frac{c_1}{k^{3/2}} \,.$$

b) For all real k > 1,

$$\left|\int_0^1 \sqrt{1-x^2} \sin(kx) \,\mathrm{d}x\right| > \frac{c_2}{k} \,.$$
[10 points]

Problem 4 For every positive integer n let $\sigma(n)$ denote the sum of all its positive divisors. A number n is called weird if $\sigma(n) \ge 2n$ and there exists no representation

$$n = d_1 + d_2 + \dots + d_r \,,$$

where r > 1 and d_1, \ldots, d_r are pairwise distinct positive divisors of n. Prove that there are infinitely many weird numbers.

[10 points]

[10 points]