The 19th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 1st April 2009 Category II

Problem 1 A positive integer m is called self-descriptive in base b, where $b \ge 2$ is an integer, if:

- i) The representation of m in base b is of the form $(a_0a_1 \dots a_{b-1})_b$ (that is $m = a_0b^{b-1} + a_1b^{b-2} + \dots + a_{b-2}b + a_{b-1}$, where $0 \le a_i \le b-1$ are integers).
- ii) a_i is equal to the number of occurrences of the number *i* in the sequence $(a_0a_1 \dots a_{b-1})$.

For example, $(1210)_4$ is self-descriptive in base 4, because it has four digits and contains one 0, two 1s, one 2 and no 3s.

- a) Find all bases $b \ge 2$ such that no number is self-descriptive in base b.
- b) Prove that if x is a self-descriptive number in base b then the last (least significant) digit of x is 0. [10 points]

Problem 2 Let *E* be the set of all continuously differentiable real valued functions *f* on [0, 1] such that f(0) = 0 and f(1) = 1. Define

$$I(f) = \int_0^1 (1+x^2) (f'(x))^2 \, \mathrm{d}x \, .$$

- a) Show that J achieves its minimum value at some element of E.
- b) Calculate $\min_{f \in E} J(f)$.

[10 points]

Problem 3 Let A be an $n \times n$ square matrix with integer entries. Suppose that $p^2 A^{p^2} = q^2 A^{q^2} + r^2 I_n$ for some positive integers p, q, r where r is odd and $p^2 = q^2 + r^2$. Prove that $|\det A| = 1$. (Here I_n means the $n \times n$ identity matrix.) [10 points]

Problem 4 Let k, m, n be positive integers such that $1 \le m \le n$ and denote $S = \{1, 2, ..., n\}$. Suppose that $A_1, A_2, ..., A_k$ are *m*-element subsets of *S* with the following property: for every i = 1, 2, ..., k there exists a partition $S = S_{1,i} \cup S_{2,i} \cup \cdots \cup S_{m,i}$ (into pairwise disjoint subsets) such that

- (i) A_i has precisely one element in common with each member of the above partition.
- (ii) Every A_i , $j \neq i$ is disjoint from at least one member of the above partition.

Show that $k \leq \binom{n-1}{m-1}$. [10 points]