
Problem j18-I-1. Find all complex roots (with multiplicities) of the polynomial

p(x) =
2008∑
n=1

(
1004− |1004− n|

)
xn .

Solution. Observe, by comparison of coefficients, that

p(x) = x
(1003∑

n=0

xn
)2

.

Since
1003∑
n=0

xn = x1004−1
x−1 , we conclude that p has the simple root 0 and the roots exp πin

502 ,

n = 1, 2, . . . , 1003, with multiplicity 2. �
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Problem j18-I-2. Find all functions f : (0,∞) → (0,∞) such that

f(f(f(x))) + 4f(f(x)) + f(x) = 6x .

Solution. Let a ∈ R+ be arbitrary. Set a0 = a, an = f(an−1) for n > 0. Then we obtain
recurrence relation

an+3 + 4an+2 + an+1 − 6an = 0 .

Characteristic equation is
y3 − 4y2 + y − 6 = 0

with roots −2, −3 and 1. The general solution of recurrence relation is

an = A(−3)n + B(−2)n + C .

If A or B are not equal to 0, we have a contradiction because in range of f we could find
negative values. So the only possible solution is an = C. Because of a0 = a we have an = a
for all n ∈ N0. Substituting n = 1 we obtain

f(a) = f(a0) = a1 = a ,

so for all a ∈ R+ we have f(a) = a.
The only solution of the equation is f(x) = x, what can be easily checked. �
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Problem j18-I-3. Find all c ∈ R for which there exists an infinitely differentiable function
f : R → R such that for all n ∈ N and x ∈ R we have

f (n+1)(x) > f (n)(x) + c . (1)

Solution. For c ≤ 0 we can take f(x) = e2x. Then f (n+1)(x) = 2n+1e2x > 2ne2x =
f (n)(x).

For positive c no function satisfies (1). We begin with two simple lemmas.
Lemma 1. If f satisfies (1), then for any x ∈ R there exists an y ≤ x such that f(y) ≤ − c

2 .

Proof. If f(t) > − c
2 on (−∞, x], then f ′(t) > c

2 for any t < x, thus

f(y) = f(x)−
∫ x

y

f ′(t) dt ≤ f(x)− (x− y)
c

2

for any y < x, thus for sufficiently small y we have f(y) < 0, a contradiction.
Lemma 2. If f satisfies (1), then for any x ∈ R such that f(x) < c

2 we have f(y) < c
2 for

any y ≤ x.

Proof. Suppose that there exists a y ≤ x such that f(y) ≥ − c
2 . Let z := sup

{
t ≤ x :

f(t) ≥ − c
2

}
. By the continuity of f (f is differentiable, thus continuous) we have f(z) ≥ − c

2 .
By the assumption upon x we have z 6= x. However by (1) we have f ′(z) ≥ c

2 , thus f ′ is
positive on [z, z + ε] for some ε > 0, f is increasing, thus f(t) ≥ f(z) ≥ − c

2 for t ∈ [z, z + ε],
a contradiction with the definition of z. Thus by contradiction the thesis is proved.

Now if f satisfies (1), then obviously f ′ also satisfies (1). Thus by Lemmas 1 and 2, there
exists an x0 such that f ′(t) < − c

2 on (−∞, x0]. This, however, means f(t) > f(x0)+(x0−t) c
2

for t < x0, so for sufficiently small t0 < x0 we have f(t0) > − 3c
2 > f ′(t0) − c, which is a

contradiction with (1). Thus no such f exists. �
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Problem j18-I-4. The numbers of the set {1, 2, . . . , n} are colored with 6 colors. Let

S :=
{
(x, y, z) ∈ {1, 2, . . . , n}3 : x + y + z ≡ 0 (mod n)

and x, y, z have the same color
}

and
D :=

{
(x, y, z) ∈ {1, 2, . . . , n}3 : x + y + z ≡ 0 (mod n)

and x, y, z have three different colors
}

.

Prove that

|D| ≤ 2|S|+ n2

2
.

(For a set A, |A| denotes the number of elements in A.)

Solution. Denote by n1, n2, n3, n4, n5, n6 the number of occurences of the colors. Clearly
n1 + . . . + n6 = n. We prove that

|S| − 1
2
|D| =

6∑
u=1

n2
u −

∑
1≤u<v≤6

nunv . (1)

For arbitrary u, v, w ∈ {1, 2, . . . , 6}, denote by Nuvw the number of triples (x, y, z),
satisfying x + y + z ≡ 0 (mod n) and having colors u, v and w, respectively. For any u, v we

obviously have
6∑

w=1
Nuvw = nunv and therefore

|S| − 1
2
|D| =

6∑
u=1

Nuuu −
∑

1≤u<v≤6

∑
w 6=u,v

Nuvw

=
6∑

u=1

(
n2

u −
∑
v 6=u

Nuuv

)
−

∑
1≤u<v≤6

(
nunv −Nuuv −Nuvv

)
=

6∑
u=1

n2
u −

∑
1≤u<v≤6

nunv .

Now, applying the AM-QM inequality,

|S| − 1
2
|D| =

6∑
u=1

n2
u −

∑
1≤u<v≤6

nunv =
3
2

6∑
u=1

n2
u −

1
2

( 6∑
u=1

nu

)2

≥
(1

4
− 1

2

)( 6∑
u=1

nu

)2

= −n2

4
.

�

Second solution. We present a different proof for the relation (1). We use the nota-
tion Nuvw as well.

For every u = 1, 2, . . . , 6, let Cu be the set of those numbers from {1, 2, . . . , n} which
have the uth color and let fu(t) :=

∑
x∈Cu

tx.

Let ε := e2πi/n. We will use that for every integer s,

1
n

n−1∑
j=0

εjs =
{

1 if s ≡ 0 (mod n)
0 if s 6≡ 0 (mod n) .

Then, for arbitrary colors u, v, w,

Nuvw =
∑

x∈Cu

∑
y∈Cv

∑
z∈Cw

1
n

n−1∑
j=0

εj(x+y+z)

=
1
n

n−1∑
j=0

( ∑
x∈Cu

εjx
)( ∑

y∈Cv

εjy
)( ∑

z∈Cw

εjz
)

=
1
n

n−1∑
j=0

fu(εj)fv(εj)fw(εj)
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and

|S| − 1
2
|D| = 1

n

n−1∑
j=0

( 6∑
u=1

f3
u(εj)− 3

∑
u<v<w

fu(εj)fv(εj)fw(εj)
)

=
1
n

n−1∑
j=0

( 6∑
u=1

fu(εj)
)( 6∑

u=1

f2
u(εj)−

∑
u<v

fu(εj)fv(εj)
)

=
n−1∑
j=0

( 1
n

n∑
x=1

εjx
)( 6∑

u=1

f2
u(εj)−

∑
u<v

fu(εj)fv(εj)
)

.

The first factor is 0 except if j = 0. Hence,

|S| − 1
2
|D| =

6∑
u=1

f2
u(1)−

∑
u<v

fu(1)fv(1) =
6∑

u=1

n2
u −

∑
u<v

nunv .

�
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