Problem j18-I-1. Find all complex roots (with multiplicities) of the polynomial

$$
p(x) = \sum_{n=1}^{2008} (1004 - |1004 - n|) x^{n}.
$$

Solution. Observe, by comparison of coefficients, that

$$
p(x) = x \left(\sum_{n=0}^{1003} x^n\right)^2.
$$

Since $\sum_{ }^{1003}$ $\sum_{n=0}^{\infty} x^n = \frac{x^{1004}-1}{x-1}$, we conclude that p has the simple root 0 and the roots $\exp \frac{\pi in}{502}$, $n = 1, 2, \ldots, 1003$, with multiplicity 2. \Box

Problem j18-I-2. Find all functions $f: (0, \infty) \to (0, \infty)$ such that

$$
f(f(f(x))) + 4f(f(x)) + f(x) = 6x.
$$

Solution. Let $a \in \mathbb{R}^+$ be arbitrary. Set $a_0 = a$, $a_n = f(a_{n-1})$ for $n > 0$. Then we obtain recurrence relation

$$
a_{n+3} + 4a_{n+2} + a_{n+1} - 6a_n = 0.
$$

Characteristic equation is

$$
y^3 - 4y^2 + y - 6 = 0
$$

with roots -2 , -3 and 1. The general solution of recurrence relation is

$$
a_n = A(-3)^n + B(-2)^n + C.
$$

If A or B are not equal to 0, we have a contradiction because in range of f we could find negative values. So the only possible solution is $a_n = C$. Because of $a_0 = a$ we have $a_n = a$ for all $n \in \mathbb{N}_0$. Substituting $n = 1$ we obtain

$$
f(a) = f(a_0) = a_1 = a,
$$

so for all $a \in \mathbb{R}^+$ we have $f(a) = a$.

The only solution of the equation is $f(x) = x$, what can be easily checked. \Box

Problem j18-I-3. Find all $c \in \mathbb{R}$ for which there exists an infinitely differentiable function $f: \mathbb{R} \to \mathbb{R}$ such that for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$ we have

$$
f^{(n+1)}(x) > f^{(n)}(x) + c. \tag{1}
$$

Solution. For $c \le 0$ we can take $f(x) = e^{2x}$. Then $f^{(n+1)}(x) = 2^{n+1}e^{2x} > 2^n e^{2x}$ $f^{(n)}(x)$.

For positive c no function satisfies (1). We begin with two simple lemmas.

Lemma 1. If f satisfies (1), then for any $x \in \mathbb{R}$ there exists an $y \leq x$ such that $f(y) \leq -\frac{c}{2}$. *Proof.* If $f(t) > -\frac{c}{2}$ on $(-\infty, x]$, then $f'(t) > \frac{c}{2}$ for any $t < x$, thus

$$
f(y) = f(x) - \int_{y}^{x} f'(t) dt \le f(x) - (x - y)\frac{c}{2}
$$

for any $y < x$, thus for sufficiently small y we have $f(y) < 0$, a contradiction. Lemma 2. If f satisfies (1), then for any $x \in \mathbb{R}$ such that $f(x) < \frac{c}{2}$ we have $f(y) < \frac{c}{2}$ for any $y \leq x$.

Proof. Suppose that there exists a $y \leq x$ such that $f(y) \geq -\frac{c}{2}$. Let $z := \sup\{t \leq x :$ $f(t) \geq -\frac{c}{2}$. By the continuity of f (f is differentiable, thus continuous) we have $f(z) \geq -\frac{c}{2}$. By the assumption upon x we have $z \neq x$. However by (1) we have $f'(z) \geq \frac{c}{2}$, thus f' is positive on $[z, z + \varepsilon]$ for some $\varepsilon > 0$, f is increasing, thus $f(t) \ge f(z) \ge -\frac{\varepsilon}{2}$ for $\tilde{t} \in [z, z + \varepsilon]$, a contradiction with the definition of z. Thus by contradiction the thesis is proved. \Box

Now if f satisfies (1), then obviously f' also satisfies (1). Thus by Lemmas 1 and 2, there exists an x_0 such that $f'(t) < -\frac{c}{2}$ on $(-\infty, x_0]$. This, however, means $f(t) > f(x_0) + (x_0 - t)\frac{c}{2}$ for $t < x_0$, so for sufficiently small $t_0 < x_0$ we have $f(t_0) > -\frac{3c}{2} > f'(t_0) - c$, which is a contradiction with (1). Thus no such f exists. \Box

Problem j18-I-4. The numbers of the set $\{1, 2, \ldots, n\}$ are colored with 6 colors. Let

$$
S := \{(x, y, z) \in \{1, 2, ..., n\}^3 : x + y + z \equiv 0 \pmod{n}
$$

and x, y, z have the same

and

$$
D := \left\{ (x, y, z) \in \{1, 2, \dots, n\}^3 : x + y + z \equiv 0 \pmod{n} \right\}
$$

and x, y, z have three different colors $\right\}$.

Prove that

$$
|D| \le 2|S| + \frac{n^2}{2}.
$$

(For a set A , | A | denotes the number of elements in A .)

Solution. Denote by $n_1, n_2, n_3, n_4, n_5, n_6$ the number of occurences of the colors. Clearly $n_1 + \ldots + n_6 = n$. We prove that

$$
|S| - \frac{1}{2}|D| = \sum_{u=1}^{6} n_u^2 - \sum_{1 \le u < v \le 6} n_u n_v \,. \tag{1}
$$

 $color\}$

For arbitrary $u, v, w \in \{1, 2, ..., 6\}$, denote by N_{uvw} the number of triples (x, y, z) , satisfying $x + y + z \equiv 0 \pmod{n}$ and having colors u, v and w, respectively. For any u, v we obviously have $\sum_{n=1}^{\infty}$ $\sum_{w=1} N_{uvw} = n_u n_v$ and therefore

$$
|S| - \frac{1}{2}|D| = \sum_{u=1}^{6} N_{uuu} - \sum_{1 \le u < v \le 6} \sum_{w \ne u,v} N_{uvw}
$$

=
$$
\sum_{u=1}^{6} \left(n_u^2 - \sum_{v \ne u} N_{uuv} \right) - \sum_{1 \le u < v \le 6} \left(n_u n_v - N_{uuv} - N_{uvw} \right)
$$

=
$$
\sum_{u=1}^{6} n_u^2 - \sum_{1 \le u < v \le 6} n_u n_v.
$$

Now, applying the AM-QM inequality,

$$
|S| - \frac{1}{2}|D| = \sum_{u=1}^{6} n_u^2 - \sum_{1 \le u < v \le 6} n_u n_v = \frac{3}{2} \sum_{u=1}^{6} n_u^2 - \frac{1}{2} \left(\sum_{u=1}^{6} n_u\right)^2
$$

$$
\ge \left(\frac{1}{4} - \frac{1}{2}\right) \left(\sum_{u=1}^{6} n_u\right)^2 = -\frac{n^2}{4}.
$$

Second solution. We present a different proof for the relation (1) . We use the notation N_{uvw} as well.

For every $u = 1, 2, \ldots, 6$, let C_u be the set of those numbers from $\{1, 2, \ldots, n\}$ which have the *u*th color and let $f_u(t) := \sum_{x \in C_u}$ t^x .

Let $\varepsilon := e^{2\pi i/n}$. We will use that for every integer s,

$$
\frac{1}{n}\sum_{j=0}^{n-1}\varepsilon^{js} = \begin{cases} 1 & \text{if } s \equiv 0 \pmod{n} \\ 0 & \text{if } s \not\equiv 0 \pmod{n} \end{cases}
$$

Then, for arbitrary colors u, v, w ,

$$
N_{uvw} = \sum_{x \in C_u} \sum_{y \in C_v} \sum_{z \in C_w} \frac{1}{n} \sum_{j=0}^{n-1} \varepsilon^{j(x+y+z)}
$$

=
$$
\frac{1}{n} \sum_{j=0}^{n-1} \Biggl(\sum_{x \in C_u} \varepsilon^{jx} \Biggr) \Biggl(\sum_{y \in C_v} \varepsilon^{jy} \Biggr) \Biggl(\sum_{z \in C_w} \varepsilon^{jz} \Biggr) = \frac{1}{n} \sum_{j=0}^{n-1} f_u(\varepsilon^j) f_v(\varepsilon^j) f_w(\varepsilon^j)
$$

2-Apr-2008 **j18-I-4 1** 12:56

 \Box

and

$$
|S| - \frac{1}{2}|D| = \frac{1}{n} \sum_{j=0}^{n-1} \left(\sum_{u=1}^{6} f_u^3(\varepsilon^j) - 3 \sum_{u < v < w} f_u(\varepsilon^j) f_v(\varepsilon^j) f_w(\varepsilon^j) \right)
$$

\n
$$
= \frac{1}{n} \sum_{j=0}^{n-1} \left(\sum_{u=1}^{6} f_u(\varepsilon^j) \right) \left(\sum_{u=1}^{6} f_u^2(\varepsilon^j) - \sum_{u < v} f_u(\varepsilon^j) f_v(\varepsilon^j) \right)
$$

\n
$$
= \sum_{j=0}^{n-1} \left(\frac{1}{n} \sum_{x=1}^{n} \varepsilon^{jx} \right) \left(\sum_{u=1}^{6} f_u^2(\varepsilon^j) - \sum_{u < v} f_u(\varepsilon^j) f_v(\varepsilon^j) \right).
$$

The first factor is 0 except if $j = 0$. Hence,

$$
|S| - \frac{1}{2}|D| = \sum_{u=1}^{6} f_u^2(1) - \sum_{u < v} f_u(1) f_v(1) = \sum_{u=1}^{6} n_u^2 - \sum_{u < v} n_u n_v \, .
$$

