The 17th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 28th March 2007 Category II

Problem 1. Construct a set $A \subset [0,1] \times [0,1]$ such that A is dense in $[0,1] \times [0,1]$ and every vertical and every horizontal line intersects A in at most one point. [10 points]

Problem 2. Let A be a real $n \times n$ matrix satisfying

 $A + A^t = I,$

where A^t denotes the transpose of A and I the $n \times n$ identity matrix. Show that det A > 0. [10 points]

Problem 3. Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that f(0) = f(1) = 0. Prove that the set

$$A := \{h \in [0,1] : f(x+h) = f(x) \text{ for some } x \in [0,1]\}$$

is Lebesgue measureable and has Lebesgue measure at least $\frac{1}{2}$. [10 points]

Problem 4. Let S be a finite set with n elements and \mathcal{F} a family of subsets of S with the following property:

$$A \in \mathcal{F}, A \subseteq B \subseteq S \Longrightarrow B \in \mathcal{F}.$$

Prove that the function $f: [0, 1] \to \mathbb{R}$ given by

$$f(t) := \sum_{A \in \mathcal{F}} t^{|A|} (1-t)^{|S \setminus A|}$$

is nondecreasing (|A| denotes the number of elements of A).

[10 points]