
The 16th Annual Vojtěch Jarník
International Mathematical Competition

Ostrava, 29th March 2006
Category I

Problem 1 Given real numbers 0 = x1 < x2 < · · · < x2n < x2n+1 = 1 such that xi+1 − xi ≤ h for 1 ≤ i ≤ 2n,
show that

1− h
2

<

n∑
i=1

x2i(x2i+1 − x2i−1) <
1 + h

2
.

Solution (by Stijn Cambie) Notice that
∑n
i=1(x2i+1 +x2i−1)(x2i+1−x2i−1) = x22n+1−x21 = 1. Hence we have

to prove ∣∣∣1− 2

n∑
i=1

(x2i)(x2i+1 − x2i−1)
∣∣∣ = ∣∣∣ n∑

i=1

(x2i+1 + x2i−1 − 2x2i)(x2i+1 − x2i−1)
∣∣∣ ≤ h

Now ∣∣∣ n∑
i=1

(x2i+1 + x2i−1 − 2x2i)(x2i+1 − x2i−1)
∣∣∣ ≤ n∑

i=1

∣∣∣x2i+1 + x2i−1 − 2x2i

∣∣∣(x2i+1 − x2i−1)

≤
n∑
i=1

h(x2i+1 − x2i−1) = h

because |x2i+1 + x2i−1 − 2x2i| ≤ max(x2i+1 − x2i, x2i − x2i−1). Equality can not occur, because we would need
x2i+1 − x2i or x2i − x2i−1 would have to be zero in that case. �
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Problem 2 Suppose that (an) is a sequence of real numbers such that the series

∞∑
n=1

an
n

is convergent. Show that the sequence

bn =

n∑
j=1

aj

n

is convergent and find its limit.

Solution (by Stijn Cambie) Write An =
∑n
i=1

ai
i . Suppose this converges to A. We have bn = An −

∑n−1
i=1 Ai

n .
This converges to zero as n −→ ∞. Indeed, for each ε > 0 take some I0 such that |Ai − A| ≤ ε

3 for i ≥ I0 and
take n0 > I0 such that

(n0 − I0 + 1)
ε

3
+

I0−1∑
i=1

|A−Ai| < n0
ε

2

and | An0
| < ε

6 .
Then for n > n0 we have

|bn| =

∣∣∣∣∣An −
∑n−1
i=1 Ai
n

∣∣∣∣∣ ≤ |An −A|+
∣∣∣∣An
∣∣∣∣+ ∑n−1

i=1 |A−Ai|
n

<
ε

3
+
ε

2
+
ε

6
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Problem 3 Two players play the following game: Let n be a fixed integer greater than 1. Starting from number
k = 2, each player has two possible moves: either replace the number k by k + 1 or by 2k. The player who is
forced to write a number greater than n loses the game. Which player has a winning strategy for which n?

Solution (by Stijn Cambie)
Write n in base 4. We will prove that the second player B can only win when the representation contains

only 0 and 2s. The first player A wins in the other cases.

Claim 1 Person A wins for n odd.

Proof He just has to do k → k + 1 in each step, in each move he makes an even number odd. Next B can
make the number only even. As n is odd, A won’t ever make an even number smaller than n bigger than n by
adding one. Hence B has to do this and will lose. �

B wins for n = 2, trivial. When A chooses 2 → 4 in his first step, he wins for n = 4, 6. Person B can win
for 8 by multiply the number of A by 2 in his first step and then both have to add one each step and B reaches
8. Hence the base cases are correct.

Claim 2 When person X wins for n, he can also win for 4n and 4n+ 2.

Proof At some step, the other person will get a number k bigger than n, next X makes 2k > 2n + 1 and by
alternating adding one, we see X will reach every number. �

Hence if A wins for some n, he wins also for 4n, 4n+ 1, 4n+ 2, 4n+ 3 by both claims. So player B can only
win for 4n, 4n+ 2 where n is a number that has the predicted representation (and so do 4n, 4n+ 2). �
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Problem 4 Let A = [aij ]n×n be a matrix with nonnegative entries such that

n∑
i=1

n∑
j=1

aij = n .

1. Prove that |detA| ≤ 1.

2. If |detA| = 1 and λ ∈ C is an arbitrary eigenvalue of A, show that |λ| = 1.

(We call λ ∈ C an eigenvalue of A if there exists a non-zero vector x ∈ Cn such that Ax = λx.)

Solution (by Stijn Cambie)

1. We prove that the statement is true and equality occur only for a permutation matrix.
We can prove this by induction.
For n = 1 this is trivial (we have detA = 1).

For n = 2 we have for A =

{
a b
c d

}
that |det(A)| = |ad− bc| ≤ (a+d2 )2 + ( b+c2 )2 ≤ (a+d+b+c2 )2 = 1.

Equality occurs only when a = d = 1 or b = c = 1. So the induction hypothesis is proven for n ≤ 2.

Induction step:

Assume the sum of the entries in the (n+ 1)-th row of A is x. The sum of all other entries is n+ 1− x.
By homogenizing and using the induction hypothesis, we have that for each minor the determinant of it
has absolute value ≤ ( |n+1−x|

n )n.

Now |detA| ≤
∑
|a(n+1)j ||detM(n+1)j | ≤ nx

n ( |n+1−x|
n )n ≤

(nx+n(n+1−x)
n(n+1)

)n+1
= 1 by AM−GM.

Equality could only occur when x = 1 and each |detM(n+1)j | = 1 when |a(n+1)j | > 0 so each minor has
to be a permutation matrix, which is possible only once.
Hence A is also a permutation matrix.

2. If λ is an eigenvalue and an eigenvector is (x1x2 · · ·xn)T , then λxi = xj for some i, j, such that xi 6= 0.
Repeating this, we get cycles such that xi = λmxi for some m and hence λm = 1, hence |λ| = 1.
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1. Let u and v be two nilpotent elements in a commutative ring (with or without unity). Prove that u + v
is also nilpotent. (An element u is called nilpotent if there exists a positive integer n for which un = 0.)

2. Show an example of a (non-commutative) ring R and nilpotent elements u, v ∈ R such that u + v is not
nilpotent.

Solution (by Stijn Cambie)

1. As u, v are nilpotent, there exist n,m such that un = 0 = vm. This means ut = 0 for all t ≥ n and vs = 0
for all s ≥ m. Next u+ v is nilpotent as (u+ v)n+m =

∑(
n+m
i

)
uivn+m−i = 0,

because each term uivn+m−i = 0 as i ≥ n or n+m− i ≥ m so ui or vn+m−i = 0 in each summand.

2. Take the ring R = (Z2∗2,+, ·) with elements u =

{
1 −1
1 −1

}
and v =

{
−1 −1
1 1

}
.

Then u2 = v2 =

{
0 0
0 0

}
while u+ v =

{
0 −2
2 0

}
is not nilpotent as (u+ v)n =

{
0 (−2)n
2n 0

}
.
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Problem 2 Let (G, ·) be a finite group of order n. Show that each element of G is a square if and only if n is
odd.

Solution (by Stijn Cambie)

1. If n is odd, we know by Lagrange’s theorem that for every element g ∈ G : |g| = ord(g) divides |G| = n

and hence |g| is also odd. Write t = |g|+1
2 , then g is the square of gt. As g was taken arbitrary, it holds

for every element of G.

2. If n is even, we have to find at least one element which isn’t a square.
Claim There exist some element with order 2.

Proof Suppose the contrary. We know that the inverse in a group is unique and 1 is its own inverse. For every
other element g, we would have g 6= g−1 as g2 = 1 means |g| = 1, 2 and |g| = 1 is only possible for 1. Now look
at the sets {g, g−1}. A {1, 1} contains only one element and every other set contains 2 elements, we would have
split up G in one one-element-set and two-element-sets, which is impossible as 2 | ord(G).

Hence there is at least yet one element g such that g = g−1 and hence g2 = 1. �

Because G is finite, we can write all orders of the different elements. Take the maximum m > 0 of
{v2(|g|) | g ∈ G}. Next, choose an element h ∈ S such that 2m | ord(h) = 2t. Suppose h is a square, we
have h = k2 for some k ∈ G. Then we have h2t = k4t = 1, so ord(k) | 4t. Next k2t = ht 6= 1 as the order of h
is 2t. This means ord(k) | 4t and ord(k) - 2t hence v2(k) = v2(4t) = m + 1. This is in contradiction with the
way we have chosen m. Hence h is an element of G which is not a square. So if n is even, not all elements are
squares.
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Problem 3 For a function f : [0, 1] → R the secant of f at points a, b ∈ [0, 1], a < b, is the line in R2 passing
through

(
a, f(a)

)
and

(
b, f(b)

)
. A function is said to intersect its secant at a, b if there exists a point c ∈ (a, b)

such that
(
c, f(c)

)
lies on the secant of f at a, b.

1. Find the set F of all continuous functions f such that for any a, b ∈ [0, 1], a < b, the function f intersects
its secant at a, b.

2. Does there exist a continuous function f /∈ F such that for any rational a, b ∈ [0, 1], a < b, the function f
intersects its secant at a, b?

Solution
�
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Problem 4 Let f : [0,+∞)→ R be a strictly convex continuous function such that

lim
x→+∞

f(x)

x
= +∞ .

Prove that the improper integral
∫ +∞
0

sin
(
f(x)

)
dx is convergent but not absolutely convergent.

Solution
�


