The 15th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 6th April 2005 Category I

Problem 1. Let $S_0 = \{z \in \mathbb{C} : |z| = 1, z \neq -1\}$ and $f(z) = \operatorname{Im} z/(1 + \operatorname{Re} z)$. Prove that f is a bijection between S_0 and \mathbb{R} . Find f^{-1} . [10 points]

Problem 2. Let $f: A^3 \to A$ where A is a nonempty set and f satisfies:

- (a) for all $x, y \in A$, f(x, y, y) = x = f(y, y, x) and
- (b) for all $x_1, x_2, x_3, y_1, y_2, y_3, z_1, z_2, z_3 \in A$,

$$f(f(x_1, x_2, x_3), f(y_1, y_2, y_3), f(z_1, z_2, z_3)) = = f(f(x_1, y_1, z_1), f(x_2, y_2, z_2), f(x_3, y_3, z_3)).$$

Prove that for an arbitrary fixed $a \in A$, the operation x + y = f(x, a, y) is an Abelian group addition. [10 points]

Problem 3. Find all reals λ for which there is a nonzero polynomial *P* with real coefficients such that

$$\frac{P(1) + P(3) + P(5) + \dots + P(2n-1)}{n} = \lambda P(n)$$

for all positive integers n, and find all such polynomials for $\lambda = 2$. [10 points]

Problem 4. Let $(x_n)_{n\geq 2}$ be a sequence of real numbers such that $x_2 > 0$ and $x_{n+1} = -1 + \sqrt[n]{1 + nx_n}$ for $n \geq 2$. Find

- (a) $\lim_{n \to \infty} x_n$,
- (b) $\lim_{n \to \infty} n x_n$.

[10 points]