The 14th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 31st March 2004 Category II

Problem 1. Are the groups $(\mathbb{Q}, +)$ and (\mathbb{Q}^+, \cdot) isomorphic? (The symbol \mathbb{Q}^+ denotes the set of all positive rational numbers.) [10 points]

Problem 2. Find all functions $f: \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}_0^+$ such that

- 1. f(x,0) = f(0,x) = x for all $x \in \mathbb{R}_0^+$, 2. f(f(x,y),z) = f(x,f(y,z)) for all $x, y, z \in \mathbb{R}_0^+$ and 3. there exists a real k such that f(x+y,x+z) = kx + f(y,z)for all $x, y, z \in \mathbb{R}_0^+$.

(The symbol \mathbb{R}_0^+ denotes the set of all non-negative real numbers.) [10 points]

Problem 3. Let $\sum_{n=1}^{\infty} a_n$ be a divergent series with positive nonincreasing terms. Prove that the series

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + na_n}$$

diverges.

[10 points]

Problem 4. Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function. Assume that for every $x \in \mathbb{R}$ there is an $n \in \mathbb{N}$ (depending on x) such that

$$f^{(n)}(x) = 0.$$

Prove that f is a polynomial.

[10 points]