The 14th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 31st March 2004 Category I

Problem 1. Suppose that $f:[0,1] \to \mathbb{R}$ is a continuously differentiable function such that f(0) = f(1) = 0 and $f(a) = \sqrt{3}$ for some $a \in (0,1)$. Prove that there exist two tangents to the graph of f that form an equilateral triangle with an appropriate segment of the *x*-axis. [10 points]

Problem 2. Evaluate the sum

$$\sum_{n=0}^{\infty} \operatorname{arctg}\left(\frac{1}{1+n+n^2}\right).$$

[10 points]

Problem 3. Denote by B(c, r) the open disk of center c and radius r in the plane. Decide whether there exists a sequence $\{z_n\}_{n=1}^{\infty}$ of points in \mathbb{R}^2 such that the open disks $B(z_n, 1/n)$ are pairwise disjoint and the sequence $\{z_n\}_{n=1}^{\infty}$ is convergent. [10 points]

Problem 4. Find all pairs (m, n) of positive integers such that m+n and mn + 1 are both powers of 2. [10 points]