The 13th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 2nd April 2003 Category I

Problem 1. Let d(k) denote the number of all natural divisors of a natural number k. Prove that for any natural number n_0 the sequence $\left\{d(n^2+1)\right\}_{n=n_0}^{\infty}$ is not strictly monotone. [10 points]

Problem 2. Let $A = (a_{ij})$ be an $m \times n$ real matrix with at least one non-zero element. For each $i \in \{1, \ldots, m\}$, let $R_i = \sum_{j=1}^n a_{ij}$ be the sum of the *i*-th row of the matrix A, and for each $j \in \{1, \ldots, n\}$, let $C_j = \sum_{i=1}^m a_{ij}$ be the sum of the *j*-th column of the matrix A. Prove that there exist indices $k \in \{1, \ldots, m\}$ and $l \in \{1, \ldots, n\}$ such that

or

$$a_{kl} > 0, \qquad R_k \ge 0, \qquad C_l \ge 0,$$

 $a_{kl} < 0, \qquad R_k \le 0, \qquad C_l \le 0.$

[10 points]

Problem 3. Find the limit

$$\lim_{n \to \infty} \sqrt{1 + 2\sqrt{1 + 3\sqrt{\dots + (n-1)\sqrt{1+n}}}} .$$

[10 points]

Problem 4. Let *A* and *B* be complex Hermitian 2×2 matrices having the pairs of eigenvalues (α_1, α_2) and (β_1, β_2) , respectively. Determine all possible pairs of eigenvalues (γ_1, γ_2) of the matrix C = A + B. (We recall that a matrix $A = (a_{ij})$ is Hermitian if and only if $a_{ij} = \overline{a_{ji}}$ for all *i* and *j*.) [10 points]