The 11th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 4th April 2001 Category I

Problem 1. Let A be a set of positive integers such that for any $x, y \in A$

$$x > y \implies x - y \ge \frac{xy}{25}$$
.

Find the maximal possible number of elements of the set A.

[10 points]

Problem 2. Prove that for any prime $p \ge 5$, the number

$$\sum_{0 < k < \frac{2p}{3}} \binom{p}{k}$$

is divisible by p^2 .

[10 points]

Problem 3. Let $n \ge 2$ be a natural number. Prove that

$$\prod_{k=2}^n \ln k < \frac{\sqrt{n!}}{n} \,.$$

[10 points]

Problem 4. Let A, B, C be nonempty sets in \mathbb{R}^n . Suppose that A is bounded, C is closed and convex, and $A + B \subseteq A + C$. Prove that $B \subseteq C$.

We remind that $E + F = \{ e + f : e \in E, f \in F \}$ and $D \subseteq \mathbb{R}^n$ is convex iff $tx + (1 - t)y \in D$ for all $x, y \in D$ and any $t \in [0, 1]$.

[10 points]