The 9th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 24th March 1999 Category I

Problem 1. Find the limit

$$\lim_{n \to \infty} \left(\prod_{k=1}^n \frac{k}{k+n} \right)^{\left(e^{\frac{1999}{n}} - 1 \right)}$$

.

[10 points]

Problem 2. Find all natural numbers $n \ge 1$ such that the implication

$$(11 \mid a^n + b^n) \implies (11 \mid a \land 11 \mid b)$$

holds for any two natural numbers a and b. [8 points]

Problem 3. Let A_1, \ldots, A_n be points of an ellipsoid with center O in \mathbb{R}^n such that OA_i , for $i = 1, \ldots, n$, are mutually orthogonal. Prove that the distance of the point O from the hyperplane $A_1A_2 \ldots A_n$ does not depend on the choice of the points A_1, \ldots, A_n . [14 points]

Problem 4. Show that the following implication holds for any two complex numbers x and y: if x + y, $x^2 + y^2$, $x^3 + y^3$, $x^4 + y^4 \in \mathbb{Z}$, then $x^n + y^n \in \mathbb{Z}$ for all natural n. [8 points]