The 6th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 3rd April 1996 Category I

Problem 1 On the ellipse $\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1$ find the point $T = [x_0, z_0]$ such that the triangle bounded by the axes of the ellipse and the tangent at that point has the least area.

Problem 2 Let $\{a_n\}_{n=0}^{\infty}$ be the sequence of integers such that $a_0 = 1, a_1 = 1, a_{n+2} = 2a_{n+1} - 2a_n$. Decide weather

$$a_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k}.$$

Problem 3 Prove that the equation

$$\frac{z}{1+z^2} + \frac{y}{1+y^2} + \frac{x}{1+x^2} = \frac{1}{1996}$$

has finitely many solutions in positive integers.

The 6th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 3rd April 1996 Category II

Problem 1 Is it possible to cover the plane with the interiors of a finite number of parabolas?

Problem 2 Let $\{x_n\}_{n=0}^{\infty}$ be the sequence such that $x_0 = 2, x_1 = 1$ and x_{n+2} is the remainder of the number $x_{n+1} + x_n$ divided by 7. Prove that x_n is the remainder of the number

$$4^n \sum_{k=0}^{[n/2]} 2\binom{n}{2k} 5^k$$

divided by 7.

Problem 3 Let $\operatorname{cif}(x)$ denote the sum of the digits of the number x in the decimal system. Put $a_1 = 1997^{1996^{1997}}$, $a_{n+1} = \operatorname{cif}(a_n)$ for every n > 0. Find $\lim_{n \to \infty} a_n$.