The 5th Annual Vojtěch Jarník International Mathematical Competition Ostrava, $25^{th} - 26^{th}$ April 1995 Category I

Problem 1 Discuss the solvability of the equations

$$\lambda x + y + z = a$$
$$x + \lambda y + z = b$$
$$x + y + \lambda z = c$$

for all numbers $\lambda, a, b, c \in \mathbb{R}$.

Problem 2 Let f(x) be an even twice differentiable function such that $f''(0) \neq 0$. Prove that f(x) has a local extremum at x = 0.

Problem 3 Let f(x) and g(x) be mutually inverse decreasing functions on the interval $(0,\infty)$. Can it hold that f(x) > g(x) for all $x \in (0,\infty)$?

The 5th Annual Vojtěch Jarník International Mathematical Competition Ostrava, $25^{th} - 26^{th}$ April 1995 Category II

Problem 1 Prove that the systems of hyperbolas

$$x^2 - y^2 = a \tag{1}$$

$$xy = b \tag{2}$$

are orthogonal.

Problem 2 Let $f = f_0 + f_1 z + f_2 z^2 + \ldots + f_{2n} z^{2n}$ and $f_k = f_{2n-k}$ for each k. Prove that $f(z) = z^n g(z+z^{-1})$, where g is a polynomial of degree n.

Problem 3 Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Do there exist continuous functions $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$ such that $f(x) = g(x) \sin x + h(x) \cos x$ holds for every $x \in \mathbb{R}$?

Problem 4 Let $\{x_n\}_{n=1}^{\infty}$ be a sequence such that $x_1 = 25$, $x_n = \arctan x_{n-1}$. Prove that this sequence has a limit and find it.