The 4th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 6th April 1994 Category I

Problem 1 Prove that an arbitrary integer can be written as a sum of five cube powers of integers.

Problem 2 Prove that for the roots x_1, x_2 of the polynomial

$$x^2 - px - \frac{1}{2p^2},$$

where $p \in \mathbb{R}$ and $p \neq 0$, the following inequality holds:

$$x_1^4 + x_2^4 \ge 2 + \sqrt{2} \,.$$

Problem 3 Prove that for all $n \in \mathbb{N}$,

$$\prod_{i=1}^n \left(1 + \frac{1}{2^i}\right) < 3$$

Problem 4 Decide whether there exists a non-constant function $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$(f(x) - f(y))^2 \le |x - y|^3 \tag{1}$$

for all $x, y \in \mathbb{R}$.

The 4th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 6th April 1994 Category II

Problem 1 Find a triple of integers x, y, z, each greater than 50 and satisfying

$$x^2 + y^2 + z^2 = 3xyz \,. \tag{1}$$

Problem 2 Prove that for an arbitrary $n \in \mathbb{N}$, the number

$$\left(\frac{3+\sqrt{17}}{2}\right)^n + \left(\frac{3-\sqrt{17}}{2}\right)^n$$

is an odd integer.

Problem 3 Let the function $f : \mathbb{R} \to \mathbb{R}$ satisfy

$$f(xy) = \frac{f(x) + f(y)}{x + y} \tag{1}$$

for all $x, y \in \mathbb{R}$, $x + y \neq 0$. Is there $x \in \mathbb{R}$ such that $f(x) \neq 0$?

Problem 4 How many real roots does the polynomial

$$1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$$

have?