The 2nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 28th April 1992 Category I

Problem 1 Find the n^{th} derivation of the function

$$f(x) = \frac{x}{x^2 - 1} \,.$$

Problem 2 Prove that there exist two real convex functions f, g such that

$$f(x) - g(x) = \sin x$$

for all $x \in \mathbb{R}$.

Problem 3 Prove that for all integers n > 1,

$$(n-1)|(n^n - n^2 + n - 1).$$

Problem 4 Let X be a finite set and $f: X \to X$ be map. Prove that f is an injective map if and only if f is a surjective map.

The 2nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 28th April 1992 Category II

Problem 1 Prove that for a continuously differentiable function f(x), where f(a) = f(b) = 0,

$$\max_{x \in [a,b]} |f'(x)| \ge \frac{1}{(b-a)^2} \int_a^b |f(x)| \, \mathrm{d}x \, .$$

Problem 2 Find all functions $f : \mathbb{R} \to \mathbb{R}$ which satisfy the equality

$$xf(y) + yf(x) = (x+y)f(x)f(y).$$

Problem 3 Let Z_k be the additive group of residual classes modulo k. Decide if Z_6 is isomorphic to $Z_2 \times Z_3$.

Problem 4 Prove that each rational number $\frac{p}{q} \neq 0$ can be written in the form

$$\frac{p}{q} = b_1 + \frac{b_2}{2!} + \dots + \frac{b_n}{n!},$$

where n is a sufficiently large positive integer and $b_k \in \mathbb{Z}$ (k > 1) such that $0 \le b_k < k, \ b_n \ne 0$.